Opendata, web and dolomites

BATNMR SIGNED

Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BATNMR project word cloud

Explore the words cloud of the BATNMR project. It provides you a very rough idea of what is the project "BATNMR" about.

dendrite    energy    longer    nmr    structural    vehicles    electric    parallel    structure    interdisciplinary    oxidizing    interface    cheaper    interphase    chemistry    surface    determined    density    dnp    significantly    cycling    multiple    reactive    components    liquid    designing    grow    degradation    rechargeable    mechanisms    limiting    ceramic    powered    dynamic    electrochemistry    passivating    inherent    quinones    materials    batteries    flow    experimental    lasting    variety    composite    polarization    appropriate    generation    sei    explore    species    harsh    containing    nanoparticles    shift    reducing    extract    layers    applicable    electrochemically    emphasis    dendrites    li    electrode    electrochemical    lithium    methodology    strategies    exploited    modifying    renewable    situ    fuel    metal    techniques    biradicals    cells    demand    fuels    technologies    representing    evolve    coupled    structures    electron    interfaces    compatible    characterization    prevent    resonance    phases    balance    reaction    electronic    heterogeneous    gasoline    physical    solid    organic    solar    conventional    dynamics    chemistries    air    metrologies    final    society    spin    designed    battery    active    molecules    nuclear    technological    electrolyte    interphases    run    probe    analytical    catalysts    stability    nature    redox    intermittent   

Project "BATNMR" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙498˙219 €
 EC max contribution 3˙498˙219 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 3˙498˙219.00

Map

 Project objective

The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries. New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.

This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BATNMR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BATNMR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More