Opendata, web and dolomites


Collisional excitation of interstellar molecules: towards reactive systems

Total Cost €


EC-Contrib. €






Project "COLLEXISM" data sheet

The following table provides information about the project.


Organization address
city: LE HAVRE
postcode: 76063
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙802˙625 €
 EC max contribution 1˙802˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2024-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE LE HAVRE NORMANDIE FR (LE HAVRE) coordinator 1˙802˙625.00


 Project objective

Accurate determination of physical conditions of interstellar molecular clouds is a crucial step to better understand the life cycle of the interstellar matter and particularly the formation of stars and planets as well as the synthesis of organic molecules that may lead to emergence of life in the universe. A key parameter for the determination of these conditions from interstellar spectra is the calculation of accurate collisional rate coefficients of interstellar molecules with the most abundant species (H, He, H2 and e-). Whereas the knowledge of collisional processes has reached a certain level of maturity for collisions involving non-reactive molecules, very few reliable data exist for collisions involving reactive radicals and ions. The computation of such data is a real challenge since inelastic and reactive processes compete during collisions. In this project, we plan to overcome this complex problem and to provide collisional data for these radicals and ions in order to derive as much information as possible from the molecular spectra collected by current telescopes. As it is hardly possible to consider both collisional and reactive processes simultaneously, we will set up a new methodology based on quantum approach that allows obtaining accurate data. We will focus on molecular hydrides that are good candidates because of both their astrophysical importance and their quantum accessibility. We will carry out the determination of interaction potentials using quantum chemistry ab initio methods while the treatment of the dynamics of the nuclei will primarily be done using quantum time-independent reactive and non-reactive approaches. When exact quantum calculations will not be usable, innovative statistical quantum mechanical methods will also be explored. The new data will then be used in radiative transfer models and the predictions will be finally compared to observations in order to derive the abundances of reactive radicals with unprecedented accuracy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COLLEXISM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COLLEXISM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

FICOMOL (2019)

Field Control of Cold Molecular Collisions

Read More  

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More