Opendata, web and dolomites


Simulation of Turbulence and RoughnEss in Additive Manufactured parts

Total Cost €


EC-Contrib. €






 STREAM project word cloud

Explore the words cloud of the STREAM project. It provides you a very rough idea of what is the project "STREAM" about.

navier    mandatory    transfers    cnrs    manufacturing    efficiency    turbulent    sme    internal    eddy    modeling    simulation    air    customized    successfully    original    reynolds    exchangers    proposes    fluid    usable    solutions    cooled    model    validated    transfer    turbine    stream    posteriori    exchanger    dynamics    models    performance    parametrization    cfd    gains    offers    legi    tremendous    blade    issue    laboratories    good    flow    turbulence    roughness    ing    averaged    point    predict    conventional    law    candidates    coria    device    stokes    oil    manufactured    wall    physics    am    heat    view    surface    develops    complementary    pressure    impacts    priori    relies    additive    les    temisth    performances    flows    resolving    fidelity    simulations    strategies    derive    itself    parametrized    introduces    database    fuel    extensively    consists    rans    modeled    statistical    cooler    computational    sufficient    depends    engine    subtractive    thermal    extended    designing    prediction    accuracy   

Project "STREAM" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 604˙280 €
 EC max contribution 604˙280 € (100%)
 Programme 1. H2020-EU. (ITD Engines)
 Code Call H2020-CS2-CFP09-2018-02
 Funding Scheme CS2-RIA
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2022-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
2    TEMISTH SAS FR (MARSEILLE) participant 175˙900.00


 Project objective

Additive manufacturing (AM) process offers tremendous gains over conventional subtractive manufacturing in heat exchanger design, key issue of thermal engine efficiency. The STREAM project aims at designing novel modeling strategies for the performance prediction of additive-manufactured heat exchangers. The consortium consists in two laboratories CNRS-CORIA and CNRS-LEGI, which have a long experience in high-fidelity multi-physics turbulent flow modeling and TEMISTh, a SME which develops customized solutions for heat exchangers. From the fluid dynamics point of view, AM often introduces important wall roughness, which depends strongly on the manufacturing process itself, and which impacts heat transfer and pressure loss across the device. It is therefore mandatory to design Computational Fluid Dynamics (CFD) models with a sufficient level of accuracy to predict the performances of heat exchangers. RANS (Reynolds-Averaged Navier-Stokes) and LES (Large-Eddy Simulation) are two complementary turbulence modeling approaches that are good candidates for such challenge. In these approaches, wall modeling often relies on statistical analysis, leading to law-of-the-wall models that are widely used in the prediction of internal flows. However, these models need to be extended and validated for wall roughness generated by additive manufacturing. To this aim, STREAM proposes to build a large database of high-fidelity roughness-resolving Large-Eddy Simulations that will be analyzed to derive well-parametrized statistical wall models. An original wall model parametrization will be used that has already been successfully adapted to heat transfers on a turbine blade. The resulting statistical model, usable in both roughness-modeled RANS and LES approaches, will be extensively validated a priori by comparison with the high-fidelity database and a posteriori on classical heat exchanger applications: Fuel-Cooled Oil Cooler, Air-cooled Oil cooler, Surface Air-cooled Oil cooler.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STREAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STREAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.

DEBRA (2018)

Diamond Element BeaRings with Air-cooling

Read More  

AIRSEAL (2019)

Airflow characterization through rotating labyrinth seal

Read More  


CROwned Spline Surface Optimization using New Treatments

Read More