Opendata, web and dolomites

NOVACHIP SIGNED

Novel vascular-like BBB-on-a-chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOVACHIP project word cloud

Explore the words cloud of the NOVACHIP project. It provides you a very rough idea of what is the project "NOVACHIP" about.

safer    exhibit    structural    magnetic    pathophysiology    matrix    compare    functional    fluidic    quantifying    off    self    alzheimer    companies    plaques    grant    properly    chip    patients    human    barrier    assembly    strofunscaff    grow    recreating    20    erc    generating    reduce    capacity    nephrotoxicity    mri    linked    ecm    made    break    preparation    model    resonance    tissue    proposes    stiffness    endothelialized    biomarkers    shown    indicate    biological    variety    obstacle    treatments    inability    vivo    biomechanical    combines    overcome    permeability    acute    found    resemble    extracellular    microfluidic    rat    industry    capillaries    therapies    components    designed    sizes    poc    pharmaceutical    risk    vessel    models    kidney    ad    bioprinting    constitutes    disease    predict    incorporate    disorders    ineffective    molecules    technique    evident    geometries    vessels    commercially    biologically    drug    brain    reports    native    starting    3d    diseases    limited    cells    thanks    fabrication    blood    drugs    bbb    screening    toxicity    animal    relevance    scalable    patent    complications    practical    personalized    imaging    neurological    vitro    there    novachip   

Project "NOVACHIP" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF NOTTINGHAM 

Organization address
address: University Park
city: NOTTINGHAM
postcode: NG7 2RD
website: www.nottingham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙951 €
 EC max contribution 149˙951 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) coordinator 149˙951.00

Map

 Project objective

There is great need to develop safer and more biologically relevant models for drug screening. Recent reports indicate that up to 20% of acute kidney complications can be linked to drug-induced nephrotoxicity and more than 40 molecules found to reduce Alzheimer’s Disease (AD)-related plaques in animal models were shown to be ineffective in AD patients. It is increasingly evident that both in vitro and in vivo models being used to develop drugs have a limited capacity to predict the pathophysiology of human disease, personalized response, and off-target drug toxicity. The inability to properly test drugs and treatments to diseases such as AD constitutes a risk for pharmaceutical companies and a major obstacle to overcome. This ERC PoC proposal aims to establish a practical microfluidic fabrication process capable of recreating structural and biomechanical features of native blood vessels. Specifically, we aim to develop a scalable 3D Blood-Brain-Barrier in vitro model (BBB-on-a-chip) able to provide a higher level of biological relevance than current in vitro models. The development of such a system would represent a major break-through for the pharmaceutical industry generating therapies for a variety of neurological disorders. Thanks to the ERC Starting Grant STROFUNSCAFF, we have developed a simple fabrication process that combines bioprinting and self-assembly to grow functional fluidic devices with endothelialized vessel-like capillaries (patent application in preparation). NOVACHIP proposes to a) build scalable microfluidic devices made from capillaries that incorporate relevant cells and extracellular matrix (ECM) components, exhibit tissue-like stiffness, and can be designed with specific sizes and geometries to better resemble the native BBB and b) compare it to a commercially available in vitro model as well as c) an established rat model by quantifying permeability of specific imaging biomarkers for Magnetic Resonance Imaging (MRI) technique.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOVACHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOVACHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More