Opendata, web and dolomites

Programmable Matter SIGNED

New materials enabled by programmable two-dimensional chemical reactions across van der Waals gap

Total Cost €


EC-Contrib. €






 Programmable Matter project word cloud

Explore the words cloud of the Programmable Matter project. It provides you a very rough idea of what is the project "Programmable Matter" about.

dramatically    initiate    reassembly    angstrom    batteries    bioinspired    situation    completely    crystalline    building    external    neuromorphic    energy    smart    materials    proximity    programmable    pressure    artificial    limiting    interplanar    stimuli    name    temperature    interfaces    forces    chemistry    mechanical    team    2d    waals    van    programmed    reactions    dimensional    solid    molecule    changed    flat    few    transformations    storage    electric    usually    spatial    synapses    light    progress    solar    macroscopic    fundamental    dimensions    catalysis    prevent    followed    diverse    adjusting    precisely    nanoscale    disassembly    internal    advent    impossible    chemical    der    crystals    close    digital    individual    magnetic    precise    solids    manufacturing    placing    electronics    heterostructures    sound    mechanics    interactions    ceramics    atomic    layered    atomically    thick    responds    layers    realise    pharmaceuticals    ago    actively    atom    hindered    create   

Project "Programmable Matter" data sheet

The following table provides information about the project.


Organization address
address: OXFORD ROAD
postcode: M13 9PL

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙748˙476 €
 EC max contribution 2˙748˙476 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 2˙748˙476.00


 Project objective

Chemical reactions between solids are fundamental in areas as diverse as catalysis, information storage, pharmaceuticals, electronics manufacturing, advanced ceramics, and solar energy, to name just a few. Controlling the spatial extent of solid-state reactions at the nanoscale will enable development of materials, programmed on an atomic level, which will facilitate many emerging applications like bioinspired smart batteries and artificial synapses for future neuromorphic electronics. However, currently, there are no chemistry methods which allow precise spatial control at the nanoscale, limiting progress towards the programmable matter. Here I propose a completely new way to create novel materials using two-dimensional (2D) chemical reactions at the atomically-defined interfaces between crystalline solids. Usually, reactions between macroscopic solids are hindered as their large dimensions prevent placing them close enough to each other to support chemical transformations. Thus, just a few years ago, the task of placing two atomically flat crystals within angstrom proximity of each other, to initiate chemical interactions between them, was impossible to realise. This situation has changed dramatically with the advent of van der Waals technology - disassembly of various layered crystals into individual atom- or molecule-thick layers followed by a highly-controlled reassembly of these layers into artificial heterostructures. Building on our recent progress in van der Waals technology, I aim to realise interplanar chemical reactions between highly-crystalline solids in precisely controllable conditions using temperature, electric and magnetic fields, light, sound, pressure, and mechanical forces as means of control. Using digital control of 2D chemistry, mechanics, and electronics at the nanoscale, I and my team will develop programmable matter that actively responds to external and internal stimuli by adjusting their properties on an atomic level.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROGRAMMABLE MATTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROGRAMMABLE MATTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More