Opendata, web and dolomites

POLAR-4DSpace SIGNED

4DSpace: integrated study for space weather at high latitudes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "POLAR-4DSpace" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITETET I OSLO 

Organization address
address: PROBLEMVEIEN 5-7
city: OSLO
postcode: 313
website: www.uio.no

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Total cost 1˙999˙111 €
 EC max contribution 1˙999˙111 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITETET I OSLO NO (OSLO) coordinator 1˙999˙111.00

Map

 Project objective

Ionosphere is the partially ionized, outermost part of the Earth’s atmosphere. Its dynamics is inherently complex and affected by dynamic conditions in the solar wind. In the polar regions, it is directly coupled to the Earth’s magnetosphere and space plasma. The polar ionosphere is subject to the auroral particle precipitation, instabilities and turbulence, which all influence the energy transfer through the ionosphere and lead to plasma density irregularities which lead to scintillations of trans-ionospheric radio signals. Irregularities span over a large range of scales, from thousands of kilometers down to centimeters, making their investigation a highly challenging task. The state of ionosphere at high latitudes is a crucial aspect of the space weather, which has important impact on today’s society, in particular in the context of increasing shipping, aviation, and other operations in the Arctic. Understanding processes in the polar ionosphere, their technological impacts, and laying foundations for robust models for forecasting space weather effects are one of the major goals in space science. This project will determine the role of auroral particle precipitations and geomagnetic activity for the development of plasma irregularities at high latitudes, and their impacts on the global navigation satellite systems. Through an integrated approach, combining in-situ measurements by sounding rockets with novel multi-payloads, cutting-edge numerical simulations, and statistical studies with ground- and satellite-based observations at both hemispheres, it will provide groundbreaking understanding of plasma irregularities in the polar ionosphere, give insight into the energy transfer in the ionosphere, and lay foundations for the space weather models that will improve security of operations in the polar regions. The project is across scientific domains: it deals with the Earth’s Ionosphere, the near-Earth space environment, and fundamental processes in plasma physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "POLAR-4DSPACE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "POLAR-4DSPACE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

ii-MAX (2020)

Unravelling new immunity-independent mechanisms for durable resistance to blast fungi using MAX effectors

Read More