Opendata, web and dolomites

UNCARIA SIGNED

UNCARIA: UNcertainty estimation in CARdiac Image Analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UNCARIA project word cloud

Explore the words cloud of the UNCARIA project. It provides you a very rough idea of what is the project "UNCARIA" about.

accomplished    box    translation    generation    followed    deaths    renowned    promise    regularities    interpretable    observation    decisions    cutting    economy    tools    diseases    group    conventional    black    outgoing    direction    idea    train    workplan    annotated    operations    models    predictive    readily    stage    unfortunately    nature    groups    risk    errors    predictions    deep    degree    data    yearly    medical    billions    powered    unprecedented    image    210    enabled    prediction    nearly    cardiovascular    cardiac    model    confidence    secondment    diagnostic    redefining    founded    accuracy    prestigious    amounts    neural    reached    returning    vision    undermines    designed    humans    statistical    lack    computing    local    emergence    training    building    edge    fundamental    maximizing    computer    computational    transfer    host    networks    incoming    candidate    boundaries    accurate    45    revolves    adoption    sequence    clinical    decision    tier    worldwide    dnns    mathematical    largely    biomedical    diagnosis    space   

Project "UNCARIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POMPEU FABRA 

Organization address
address: PLACA DE LA MERCE, 10-12
city: BARCELONA
postcode: 8002
website: www.upf.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 224˙071 €
 EC max contribution 224˙071 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-11-02   to  2023-05-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA ES (BARCELONA) coordinator 224˙071.00
2    THE UNIVERSITY OF ADELAIDE AU (ADELAIDE) partner 0.00

Map

 Project objective

Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.

The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.

This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNCARIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNCARIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More