Opendata, web and dolomites

UNCARIA SIGNED

UNCARIA: UNcertainty estimation in CARdiac Image Analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UNCARIA project word cloud

Explore the words cloud of the UNCARIA project. It provides you a very rough idea of what is the project "UNCARIA" about.

transfer    building    direction    errors    accurate    incoming    billions    economy    45    210    nearly    dnns    renowned    reached    groups    cardiovascular    networks    lack    emergence    maximizing    followed    promise    founded    interpretable    stage    train    computer    prestigious    edge    diagnosis    medical    yearly    outgoing    accomplished    enabled    diagnostic    prediction    group    cardiac    adoption    unfortunately    black    worldwide    degree    humans    confidence    conventional    computing    tools    secondment    readily    computational    nature    amounts    revolves    predictive    box    host    powered    biomedical    vision    decisions    local    fundamental    statistical    model    generation    largely    translation    mathematical    decision    space    diseases    clinical    unprecedented    returning    risk    deaths    models    cutting    neural    workplan    undermines    training    redefining    regularities    predictions    image    annotated    idea    operations    accuracy    data    designed    sequence    observation    tier    deep    candidate    boundaries   

Project "UNCARIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POMPEU FABRA 

Organization address
address: PLACA DE LA MERCE, 10-12
city: BARCELONA
postcode: 8002
website: www.upf.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 224˙071 €
 EC max contribution 224˙071 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-11-02   to  2023-05-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA ES (BARCELONA) coordinator 224˙071.00
2    THE UNIVERSITY OF ADELAIDE AU (ADELAIDE) partner 0.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.

The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.

This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNCARIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNCARIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

ICL CHROM (2020)

DNA interstrand crosslink repair and chromatin remodelling

Read More