Opendata, web and dolomites

UNCARIA SIGNED

UNCARIA: UNcertainty estimation in CARdiac Image Analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UNCARIA project word cloud

Explore the words cloud of the UNCARIA project. It provides you a very rough idea of what is the project "UNCARIA" about.

statistical    emergence    medical    prestigious    humans    founded    direction    model    amounts    cardiovascular    training    unfortunately    maximizing    powered    readily    outgoing    stage    transfer    computing    models    followed    sequence    conventional    diseases    45    train    largely    annotated    nearly    accomplished    mathematical    worldwide    unprecedented    renowned    prediction    diagnosis    black    confidence    vision    computational    promise    nature    predictive    decision    secondment    host    reached    lack    local    workplan    incoming    economy    enabled    networks    returning    translation    data    yearly    adoption    dnns    revolves    building    regularities    accuracy    degree    observation    edge    groups    tools    generation    operations    group    biomedical    cardiac    risk    designed    diagnostic    deaths    clinical    box    billions    space    cutting    idea    errors    neural    predictions    interpretable    accurate    fundamental    decisions    210    redefining    boundaries    candidate    undermines    image    computer    deep    tier   

Project "UNCARIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POMPEU FABRA 

Organization address
address: PLACA DE LA MERCE, 10-12
city: BARCELONA
postcode: 8002
website: www.upf.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 224˙071 €
 EC max contribution 224˙071 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-11-02   to  2023-05-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA ES (BARCELONA) coordinator 224˙071.00
2    THE UNIVERSITY OF ADELAIDE AU (ADELAIDE) partner 0.00

Map

 Project objective

Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.

The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.

This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNCARIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNCARIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More