Opendata, web and dolomites


Broadband Superconducting Nanowire Single Photon Detectors

Total Cost €


EC-Contrib. €






 SuSiPOD project word cloud

Explore the words cloud of the SuSiPOD project. It provides you a very rough idea of what is the project "SuSiPOD" about.

detection    photons    superconducting    platform    approximately    jitter    ranging    photon    suited    susipod    fabrication    outperform    timing    propagating    aln    coupling    triggers    nitride    paving    broadband    tapered    unity    optics    nanowire    layers    waveguides    alternative    fundamental    near    science    quantum    nm    gan    6000    material    below    close    evanescent    century    lattice    limited    wavelength    establishment    critical    coupled    spike    ultra    proven    transparent    matched    relies    photodiodes    gap    21st    computer    geometry    waveguide    realization    efficiency    unavoidable    operation    normal    infrared    absorption    thin    fibre    dark    medical    counts    prototype    leads    nbn    band    400    communication    imaging    quality    laterally    avalanche    substrate    generation    boosted    lidar    spectral    pulsing    ing    voltage    space    probability    single    detectors    transition    semiconductor    light    impinging    visible    optical    biased   

Project "SuSiPOD" data sheet

The following table provides information about the project.


Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2017-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Single-photon detection is an emerging technology, with applications ranging from medical imaging and LIDAR systems to space communication and fundamental quantum optics. Moreover, single-photon detectors are considered an enabling technology for the development of quantum information science, paving the way for the realization of one of the main challenges of the 21st century: the quantum computer. Currently, single-photon detection is carried out using semiconductor-based avalanche photodiodes; however, this technology is limited by large timing jitter, unavoidable dark counts, after pulsing, and limited detection efficiency. A recently proposed alternative relies on a superconducting nanowire biased just below its critical current, so that an impinging photon triggers a transition from the superconducting to the normal state, resulting in a voltage spike at the nanowire leads. The detection efficiency can be boosted close to unity by coupling the superconducting nanowire to the evanescent field propagating in a waveguide. However, the fabrication of high quality, ultra-thin superconducting layers is challenging, and the operation wavelength of such devices is limited by the waveguide band gap. We have identified GaN/AlN as the best suited waveguide material system, approximately lattice matched with NbN, and with a transparent band from 400 to 6000 nm. The target of the SuSiPOD project is the establishment of a technology platform for the fabrication of a new generation of broadband superconducting nanowire single-photon detectors built on III-nitride waveguides, in which photons are coupled laterally with the help of a tapered optical fibre. This new geometry should allow near-unity absorption probability in a wide spectral range, since the substrate is transparent to visible and infrared light. The project success will be proven by the realization of a working prototype which will greatly outperform state-of-the-art single-photon detectors.


year authors and title journal last update
List of publications.
2016 L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, J.M. Gérard
Design of broadband high-efficiency superconducting-nanowire single photon detectors
published pages: , ISSN: 0953-2048, DOI: 10.1088/0953-2048/29/6/065016
Superconductor Science and Technology 2019-07-23
2017 Luca Redaelli ; Gabriele Bulgarini ; Sergiy Dobrovolskiy ; Sander Dorenbos ; Anna Mukhtarova ; Val Zwiller ; Eva Monroy ; Jean-Michel Gérard
High absorption efficiency and polarization-insensitivity in superconducting-nanowire single-photon detectors
published pages: , ISSN: 1996-756X, DOI: 10.1117/12.2252332
2017 L Redaelli, V Zwiller, E Monroy and J M Gérard
Design of polarization-insensitive superconducting single photon detectors with high-index dielectrics
published pages: , ISSN: 0953-2048, DOI: 10.1088/1361-6668/30/3/035005
Superconductor Science and Technology 2019-07-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUSIPOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUSIPOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More