Opendata, web and dolomites

OptiMADMix TERMINATED

Optimized Mesophilic Anaerobic Digestion Mixing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OptiMADMix project word cloud

Explore the words cloud of the OptiMADMix project. It provides you a very rough idea of what is the project "OptiMADMix" about.

financial    biochemical    anaerobic    biogas    additional    environment    methane    extend    cfd    co2    maximise    consequently    energy    sedimentation    food    monitor    directive    mesophilic    reduce    relationships    mixing    hydraulic    numerical    optimise    mad    recovery    sludge    uses    produces    emissions    eliminating    innovative    world    material    assisting    maximising    simulate    reductions    tangible    natural    fellowship    renewable    time    water    thereby    improvements    digester    power    countries    sewage    whilst    appropriate    methodology    benefits    minimize    hydrodynamic    global    optimize    technique    maximize    framework    meeting    wastewater    consumption    2030    biodegradable    excessive    significantly    harnessed    carbon    unnecessary    recognising    50    exists    performance    programs    output    digesters    biokinetic    microbiological    heat    bacteria    first    break    coupled    combined    environmental    grit    implementing    30    drive    treatment    reducing    industry   

Project "OptiMADMix" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-05   to  2018-01-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 183˙454.00

Map

 Project objective

The aim of this innovative Fellowship is to provide a robust numerical framework, based on novel developments in the fields of CFD and biokinetic modelling, to optimize mesophilic anaerobic digester (MAD) performance, by reducing energy consumption whilst maximising biogas production. By 2030 the world will have to produce 50% more food and energy and 30% more water. Consequently, most countries are implementing programs to reduce carbon emissions and enhance renewable energy production. MAD is the most widespread technology for the treatment of sewage sludge, the by-product of sewage treatment. This natural process uses bacteria to break down biodegradable material and produces a biogas rich in methane. The current drive to maximise energy recovery means that biogas from MAD is increasingly harnessed by combined heat and power technology. Thus, there exists the need to optimise digester performance to maximize energy recovery. The benefits of improved performance go beyond CO2 reductions, as they will facilitate environmental improvements, reduce operating costs and improve the financial performance of the European and global wastewater industry. The challenge is to improve digester control to minimize excessive mixing, so eliminating additional, unnecessary environmental and financial costs whilst maximising biogas output. We will simulate for the first time the complex relationships between hydrodynamic and microbiological processes in a MAD environment, whilst also recognising the potential for grit sedimentation within digesters. We will extend significantly previous work and use coupled CFD/MAD modelling as an innovative and robust technique to monitor and control the hydraulic and biochemical performance of MAD. Meeting the project aim will deliver an appropriate methodology to improve MAD design and control, thereby offering tangible environmental and financial benefits and assisting the meeting of EU Directive requirements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTIMADMIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTIMADMIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TxnEvoClim (2019)

Climate adaptation in Arabidopsis thaliana through evolution of transcription regulation

Read More  

CONDISOBS (2020)

Contain, Distribute, Obstruct. Governing the Mobility of Asylum Seekers in the European Union

Read More  

lanloss (2020)

Landscapes of Loss: Mapping the Affective Experience of Deforestation Among Diverse Social Groups in the South American Chaco

Read More