Opendata, web and dolomites

OptiMADMix TERMINATED

Optimized Mesophilic Anaerobic Digestion Mixing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OptiMADMix project word cloud

Explore the words cloud of the OptiMADMix project. It provides you a very rough idea of what is the project "OptiMADMix" about.

methodology    wastewater    consumption    bacteria    numerical    recovery    sludge    emissions    optimize    countries    harnessed    digesters    benefits    produces    simulate    appropriate    grit    uses    framework    assisting    drive    meeting    output    tangible    thereby    material    whilst    cfd    biogas    biochemical    reducing    optimise    food    methane    world    combined    mad    energy    excessive    exists    treatment    water    technique    eliminating    additional    natural    extend    directive    30    mesophilic    unnecessary    global    environment    maximising    biokinetic    hydraulic    maximise    financial    innovative    co2    improvements    performance    time    heat    maximize    carbon    mixing    programs    sedimentation    environmental    biodegradable    microbiological    hydrodynamic    reduce    first    significantly    monitor    renewable    relationships    fellowship    reductions    minimize    recognising    break    power    sewage    coupled    50    anaerobic    consequently    2030    industry    digester    implementing   

Project "OptiMADMix" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-05   to  2018-01-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 183˙454.00

Map

 Project objective

The aim of this innovative Fellowship is to provide a robust numerical framework, based on novel developments in the fields of CFD and biokinetic modelling, to optimize mesophilic anaerobic digester (MAD) performance, by reducing energy consumption whilst maximising biogas production. By 2030 the world will have to produce 50% more food and energy and 30% more water. Consequently, most countries are implementing programs to reduce carbon emissions and enhance renewable energy production. MAD is the most widespread technology for the treatment of sewage sludge, the by-product of sewage treatment. This natural process uses bacteria to break down biodegradable material and produces a biogas rich in methane. The current drive to maximise energy recovery means that biogas from MAD is increasingly harnessed by combined heat and power technology. Thus, there exists the need to optimise digester performance to maximize energy recovery. The benefits of improved performance go beyond CO2 reductions, as they will facilitate environmental improvements, reduce operating costs and improve the financial performance of the European and global wastewater industry. The challenge is to improve digester control to minimize excessive mixing, so eliminating additional, unnecessary environmental and financial costs whilst maximising biogas output. We will simulate for the first time the complex relationships between hydrodynamic and microbiological processes in a MAD environment, whilst also recognising the potential for grit sedimentation within digesters. We will extend significantly previous work and use coupled CFD/MAD modelling as an innovative and robust technique to monitor and control the hydraulic and biochemical performance of MAD. Meeting the project aim will deliver an appropriate methodology to improve MAD design and control, thereby offering tangible environmental and financial benefits and assisting the meeting of EU Directive requirements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTIMADMIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTIMADMIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More