Opendata, web and dolomites



Total Cost €


EC-Contrib. €






 SUN4GREEN project word cloud

Explore the words cloud of the SUN4GREEN project. It provides you a very rough idea of what is the project "SUN4GREEN" about.

shaded    light    turned    regards    maximum    panels    south    sunlight    season    dependant    climate    smart    nets    consequently    maintenance    room    hardness    gh    reduce    spain    75    structures    prices    semi    plastic    dual    sun4green    electricity    agriculture    receive    protected    sell    negative    covered    seasonal    fruit    size    effect    conventional    depending    underperform    fuels    either    benefits    crops    growers    ghs    dominantly    roof    white    surplus    screens    temperature    25    incidence    grid    fossil    transparent    crop    obtain    positioning    greenhouse    compromised    directs    heating    tunnels    direct    yields    positioned    energy    significantly    sun    reducing    edibles    performed    savings    co2    national    foil    critical    colour    summer    sources    adaptable    pv    harvesting    temperatures    intensive    ing    adding    optimal    excess    revolutionary    performance    placed    micro    dependence    attempts    cooling    washed    supply    italy    mainly   

Project "SUN4GREEN" data sheet

The following table provides information about the project.


Organization address
address: BIZUR YEHOSHUA 33
postcode: 9640028
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2015
 Funding Scheme SME-1
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2015-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SUNBOOST LTD IL (JERUSALEM) coordinator 50˙000.00
2    RUFEPA TECNOAGRO, S.L. ES (TORRE PACHECO) participant 0.00


 Project objective

GHs are dominantly plastic foil covered structures and tunnels targeted to intensive and protected crop production. The maintenance of optimal temperatures and optimal light incidence is critical for high crop yields. In summer, GHs are typically white washed or shaded by nets or by screens, in order to avoid excess temperature in the GH. Standing out, this sunlight surplus can be turned into electricity by adding PV panels, which can supply electricity to the national grid and/or supply the required energy for a heating/cooling system for the optimal control of the GH micro-climate. However, previous attempts of dual harvesting, which have been performed mainly in Italy and Spain, used conventional PV panels or semi transparent PV panels that were positioned to receive maximum sunlight on the south facing roof of GHs and significantly shaded crops all year around, resulting in a significant a negative effect, not only with regards to high crop yields loss, up to 25% but also to negative effects on edibles and fruit size, hardness and colour, which reduce sell prices of affected crops. On the other hand, If PV panels would have been placed in other positioning then, PV harvesting would underperform and consequently PV yields would be reduced. SUN4GREEN new smart design directs light either into the greenhouse or to the PV panels depending on the season need. What makes SUN4GREEN different and revolutionary is that its performance is season dependant and is adapted to GH characteristics. Its design allows growers having real dual sun and crop harvesting targeted to obtain benefits from both sources, which is not possible with simple, direct PV technology implementation, not adaptable to seasonal agriculture requirements and where thus, agriculture was compromised to make room for PV electricity production. In addition, we achieve up to 75% CO2 savings by reducing dependence on fossil fuels.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUN4GREEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUN4GREEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.3.1.)

WETPaC (2015)

Water – Electricity – Telecommunication Package

Read More  

iDriver (2015)


Read More  

VaporPV (2016)

Low cost PV cooling system for ground-mounted and rooftop systems - VaporPV

Read More