Opendata, web and dolomites


EXploring Chemistry, Composition and Circulation in the stratosphere with InnovativeTEchnologies

Total Cost €


EC-Contrib. €






Project "EXC3ITE" data sheet

The following table provides information about the project.


Organization address
postcode: NR4 7TJ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙496˙438 €
 EC max contribution 1˙496˙438 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme /ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF EAST ANGLIA UK (NORWICH) coordinator 1˙496˙438.00


 Project objective

It is ozone that primarily heats and therefore creates the stratosphere. Human emissions of ozone-depleting substances (ODSs) have however led to dramatic stratospheric ozone losses for decades. This global problem is ongoing and of renewed concern due to recent unexpected changes. It is also likely affecting the nature of the stratosphere itself, with implications for global health and economy. In addition, emissions of greenhouse gases have been proposed to lead to a long-term acceleration of the stratospheric overturning circulation. In summary, significant stratospheric changes are to be expected from both, ozone losses and global warming. Indications for such changes have been reported, but there are substantial uncertainties and limitations connected with these studies. In addition, current technologies to explore stratospheric composition and chemistry are very expensive and often offer only infrequent data. There is clearly a need for new and improved tools to correctly detect and quantify changes from observations. This project will open 3 novel avenues to explore stratospheric chemistry, composition and circulation: 1) A newly developed low-cost technology to retrieve and analyse air from the stratosphere. This will be a new way to derive budgets of all important and newly emerging ODSs directly in the stratosphere; while at the same time providing observations of many strong greenhouse gases. 2) I have found new evidence for substantial past changes in stratospheric chemistry and circulation. An unprecedented investigation of stratospheric air archives spanning 40 years and >50 trace gases will allow new insights into these changes 3) New diagnosis tools and a detailed comparison with state-of-the-art models will identify the implications for future climate. The EXC3ITE project will result in a breakthrough in the understanding of stratospheric changes which are of high importance for society through their impact on climate prediction and ozone recovery.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EXC3ITE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EXC3ITE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LIDD (2018)

Popular Sovereignty vs. the Rule of Law? Defining the Limits of Direct Democracy

Read More  


Targeting Meniscus Degradation in Osteoarthritis

Read More  

reFUEL (2018)

Going global? Renewable fuel trade and social land-use restrictions in a low-carbon energy system

Read More