Opendata, web and dolomites

FasTER

Development of Fast Timing tools for Event Reconstruction at the high luminosity frontier

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FasTER project word cloud

Explore the words cloud of the FasTER project. It provides you a very rough idea of what is the project "FasTER" about.

fake    integrate    overlap    cm    neutral    luminosity    direction    particle    performance    bunches    beamline    innovative    sensitive    mainly    jets    crossing    resolved    detectors    hl    close    ultimate    time    concurrent    muon    transverse    dramatic    photons    beam    luminosities    complement    high    coming    fast    pileup    energy    spatial    lhc    particles    software    granularity    densities    implying    spread    identification    compact    layer    tool    track    ps    mitigate    deposits    photon    experiments    advocated    momentum    space    resolution    serious    single    collider    vertex    160    hadron    complementing    extreme    vertices    timing    appear    reconstruction    calorimeter    hardware    interactions    event    algorithms    deteriorate    definition    interaction    microchannel    tied    precision    merged    preshower    consists    price    events    collisions    random    candidate    isolated    solenoid    plates    dimensions    proton    colliders    forming    calorimeters    cms    foreseen    detector    assist   

Project "FasTER" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA 

Organization address
address: PIAZZA DELL'ATENEO NUOVO 1
city: MILANO
postcode: 20126
website: www.unimib.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://virgilio.mib.infn.it/
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA IT (MILANO) coordinator 180˙277.00

Map

 Project objective

High luminosities at future particles colliders, such as the High Luminosity Large Hadron Collider (HL-LHC), will come at the price of a dramatic increase in the number of concurrent interactions of beam particles (referred to as pileup) per crossing in the experiments, implying serious challenges to the reconstruction of events. Due to the spread of the proton bunches along the beamline, collisions vertices at the HL-LHC are spread out over about 5 cm along the beam direction and about 160 ps in time. At the vertex densities foreseen at the HL-LHC, some vertices and the associated particles are so close to be merged by the track reconstruction forming fake jets of high transverse momentum. Moreover, the random overlap of energy deposits from neutral particles (mainly photons), that cannot be tied via a track to any vertex, will deteriorate the calorimeter performance in terms of energy measurement and particle identification, as particles appear to be less isolated. A promising tool advocated to mitigate the effects of pileup consists in complementing the high transverse (spatial) granularity of the detectors with extreme time resolution (of the order of 10 ps), that would allow energy deposits coming from different interaction vertices to be resolved in time. The goal of this project is the definition of a viable way to exploit precision timing in event reconstruction at HL-LHC and integrate and/or complement the calorimeter system of the Compact Muon Solenoid (CMS) with ultimate timing capabilities. The project will address both software aspects, with the development of innovative and dedicated algorithms for event reconstruction in 5 dimensions (space-time and energy), and hardware aspects, with the study of microchannel plates as candidate sensitive detector for a dedicated fast timing layer, eventually embedded in a preshower, to assist the calorimeters in single particle and photon timing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FASTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FASTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More