Opendata, web and dolomites

NanoPhennec SIGNED

Nanophononic devices: from phonon networks to phonon CQED

Total Cost €


EC-Contrib. €






 NanoPhennec project word cloud

Explore the words cloud of the NanoPhennec project. It provides you a very rough idea of what is the project "NanoPhennec" about.

techniques    interaction    toolbox    qd    play    quantum    electromagnetic    confining    pillar    horizons    powerful    semiconductor    resource    decoherence    maximize    bridging    transfer    vibration    virtually    cavity    qds    first    nanophononics    paved    dimensional    blocks    ideal    physical    unprecedented    acoustic    source    solids    dots    optophononic    networks    unexplored    striking    electrodynamics    opens    gap    environment    platform    perform    photons    dynamics    microcavities    nanophononic    condensed    deterministically    cavities    building    photon    interact    progress    demonstrated    knob    simultaneously    phenomena    atom    engineering    phonon    appropriate    full    perspectives    elastic    shaping    resonators    positioned    solid    quanta    frontiers    measuring    acoustically    phonons    tens    excitation    engineer    ghz    artificial    worlds    actually    sources    network    structures    confined    single    near    coupled    optics    fabrication    phononic    nanomechanical    explore    algaas   

Project "NanoPhennec" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙499˙375 €
 EC max contribution 1˙499˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2022-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Phonons (quanta of vibration) play a major role in many of the physical properties of condensed matter. One of the most striking features of acoustic phonons is their ability to interact with virtually any other excitation in solids. Recent progress in the design, fabrication and control of nanomechanical systems has paved the way to explore new frontiers in the classical and quantum worlds. Devices based on semiconductor quantum dots (QDs) have been recently demonstrated to perform as near-ideal single photon sources, a very promising platform for developing a solid-state quantum network. The phonon engineering, however, remains an unexplored knob in the quantum information toolbox.

The goal of this project is to explore new horizons in nanophononics by developing novel phononic networks with full control on the phonon dynamics, and unprecedented structures capable of acoustically interact with single QDs, bridging the gap between nanophononics and semiconductor QD quantum optics.

AlGaAs based semiconductor cavities are capable of confining simultaneously photons and phonons. The building blocks of the proposed research are semiconductor pillar microcavities and single QDs deterministically positioned to maximize their interaction with the confined electromagnetic and elastic fields. To achieve our main goal we set three major objectives: 1) To develop novel one- and three-dimensional optophononic resonators and develop appropriate phononic measuring techniques; 2) To engineer nanophononic networks working in the tens-of-GHz range; and 3) To demonstrate first phonon cavity quantum electrodynamics phenomena for a single artificial atom coupled to a phononic cavity. Shaping the phononic environment opens exciting perspectives for solid state quantum applications, by providing a full control over the main source of decoherence and actually using it as a powerful resource to eventually transfer the quantum information.


year authors and title journal last update
List of publications.
2018 S. Anguiano, P. Sesin, A. E. Bruchhausen, F. R. Lamberti, I. Favero, M. Esmann, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, P. Senellart, A. Fainstein
Scaling rules in optomechanical semiconductor micropillars
published pages: 63810, ISSN: 2469-9926, DOI: 10.1103/physreva.98.063810
Physical Review A 98/6 2019-08-29
2019 G. Arregui, O. Ortíz, M. Esmann, C. M. Sotomayor-Torres, C. Gomez-Carbonell, O. Mauguin, B. Perrin, A. Lemaître, P. D. García, N. D. Lanzillotti-Kimura
Coherent generation and detection of acoustic phonons in topological nanocavities
published pages: 30805, ISSN: 2378-0967, DOI: 10.1063/1.5082728
APL Photonics 4/3 2019-08-29
2018 M. Esmann, F. R. Lamberti, A. Lemaître, N. D. Lanzillotti-Kimura
Topological acoustics in coupled nanocavity arrays
published pages: 161109, ISSN: 2469-9950, DOI: 10.1103/physrevb.98.161109
Physical Review B 98/16 2019-08-29
2019 G. Arregui, N. D. Lanzillotti-Kimura, C. M. Sotomayor-Torres, P. D. García
Anderson Photon-Phonon Colocalization in Certain Random Superlattices
published pages: 43903, ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.043903
Physical Review Letters 122/4 2019-08-29
2019 M. Esmann, F. R. Lamberti, A. Harouri, L. Lanco, I. Sagnes, I. Favero, G. Aubin, C. Gomez-Carbonell, A. Lemaître, O. Krebs, P. Senellart, N. D. Lanzillotti-Kimura
Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300  GHz
published pages: 854, ISSN: 2334-2536, DOI: 10.1364/optica.6.000854
Optica 6/7 2019-08-29
2018 Martin Esmann, Norberto D. Lanzillotti-Kimura
A Topological View on Optical and Phononic Fabry–Perot Microcavities through the Su–Schrieffer–Heeger Model
published pages: 527, ISSN: 2076-3417, DOI: 10.3390/app8040527
Applied Sciences 8/4 2019-06-13
2018 S. Anguiano, A. E. Bruchhausen, I. Favero, I. Sagnes, A. Lemaître, N. D. Lanzillotti-Kimura, A. Fainstein
Optical cavity mode dynamics and coherent phonon generation in high- Q micropillar resonators
published pages: 13816, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.98.013816
Physical Review A 98/1 2019-06-13
2018 Martin Esmann, Fabrice Roland Lamberti, Pascale Senellart, Ivan Favero, Olivier Krebs, Loïc Lanco, Carmen Gomez Carbonell, Aristide Lemaître, Norberto Daniel Lanzillotti-Kimura
Topological nanophononic states by band inversion
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.155422
Physical Review B 97/15 2019-06-13
2017 F. R. Lamberti, Q. Yao, L. Lanco, D. T. Nguyen, M. Esmann, A. Fainstein, P. Sesin, S. Anguiano, V. Villafañe, A. Bruchhausen, P. Senellart, I. Favero, N. D. Lanzillotti-Kimura
Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range
published pages: 24437, ISSN: 1094-4087, DOI: 10.1364/OE.25.024437
Optics Express 25/20 2019-06-13
2017 F. R. Lamberti, M. Esmann, A. Lemaître, C. Gomez Carbonell, O. Krebs, I. Favero, B. Jusserand, P. Senellart, L. Lanco, N. D. Lanzillotti-Kimura
Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice
published pages: 173107, ISSN: 0003-6951, DOI: 10.1063/1.5000805
Applied Physics Letters 111/17 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPHENNEC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPHENNEC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CN Identity (2019)

Comprehensive anatomical, genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks

Read More  

sociOlfa (2020)

Learning from social scents: from territory to identity

Read More  

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More