Opendata, web and dolomites


Innovative Cloud-Based PV Workflow for Semiconductor Foundries

Total Cost €


EC-Contrib. €






 PVCLOUD project word cloud

Explore the words cloud of the PVCLOUD project. It provides you a very rough idea of what is the project "PVCLOUD" about.

intends    dense    iteration    opex    stage    services    jobs    expensive    winning    workflow    million    tape    easier    tool    dominating    fabrication    checking    benefits    optimize    modern    technologies    fixing    innovative    pioneer    effectiveness    dollar    actual    companies    semiconductor    quality    clients    billions    layout    barrier    efficient    competitiveness    outdated    lowered    vendors    hardware    errors    fabs    transistors    affordable    physical    manufacturing    microelectronics    delays    microchip    fab    microchips    disruptive    industrial    ready    proprietary    polyteda    ineffective    dependent    disrupt    threshold    shared    days    smaller    plant    solution    business    overlooked    ip    revenues    tools    seize    cloud    sales    industry    rules    2009    losses    consequently    eda    6bn    software    view    lower    verification    ultimately    ict    model    generate    since    pay    drc    error    market    entry    ing    capex    move    outs    pv    time    sophisticated    verified   

Project "PVCLOUD" data sheet

The following table provides information about the project.


Organization address
city: KYIV
postcode: 4136
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ukraine [UA]
 Project website
 Total cost 1˙744˙125 €
 EC max contribution 1˙220˙887 € (70%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-2-2016-2017
 Funding Scheme SME-2
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2018-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Since 2009, POLYTEDA’s ICT product addresses the Physical Verification (PV) stage of semiconductor design before the actual manufacturing of a microchip at the fab (Fabrication Plant). The layout view of a microchip has to be verified by identifying and fixing any design errors. This requires sophisticated software known as Design Rules Checking (DRC) tool. An overlooked error may cause multi-million dollar losses and time to market delays.

Today’s PV tools may take up to several days to make just one iteration on modern increasingly complex, dense (often billions of transistors) microchips. The proposed disruptive ICT PV workflow along with an innovative cloud-based business model will set new rules and ultimately disrupt the market. It will increase the competitiveness of European semiconductor microelectronics industry and advance enabling and industrial technologies.

This project will allow POLYTEDA CLOUD to further develop its product, increase revenues, generate jobs and seize the PV market, currently estimated at 1,6bn $.

POLYTEDA CLOUD concept intends to: -Move PV software and services from an outdated and ineffective CAPEX model using (dedicated expensive hardware and software) to a more cost-efficient OPEX model (pay-per-use of shared cloud-based resources). -Lower the entry barrier for smaller design companies by using a high quality, cloud-ready PV workflow. This innovative solution and business model for PV of semiconductor design optimize the manufacturing process with resulting cost-effectiveness.

Benefits for fabs include the higher quality of tape-outs, winning new clients and increasing sales of the fabs proprietary IP.

European industry will pioneer the PV cloud-based services and consequently become less dependent on the dominating US EDA tool vendors.

The market entry threshold would be lowered for smaller design companies due to a more affordable and easier to use innovative PV workflow.


List of deliverables.
Leaflets Websites, patent fillings, videos etc. 2019-05-31 11:52:54
Launch of POLYTEDA website Websites, patent fillings, videos etc. 2019-05-31 11:53:02
The CMS fully operational at the pilot fab including the GUI, billing, and licensing Other 2019-05-31 11:53:08
POLYTEDA accounts in social networks Websites, patent fillings, videos etc. 2019-05-31 11:53:02
Published press-release on the start of the commercial exploitation Websites, patent fillings, videos etc. 2019-05-31 11:52:52
The CMS with PowerDRC/LVS fully operational on the pilot fab’s hardware Other 2019-05-31 11:53:00
The improved version of PowerDRC/LVS fully operational in the pilot fab cloud environment Other 2019-05-31 11:52:55

Take a look to the deliverables list in detail:  detailed list of PVCLOUD deliverables.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PVCLOUD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PVCLOUD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.;H2020-EU.2.3.1.)

Assist (2015)

Telocate ASSIST – Development and marketing of an acoustic solution for localization and navigation of people in buildings using the smartphone

Read More  

Meshporto_smeIns1_2 (2018)

PsstMenu allows customers to place orders directly from home or restaurant tables using only a smartphone.

Read More  

Enterprise BIM (2017)

Enterprise BIM digitization platform feasibility verification

Read More