Opendata, web and dolomites

RetroNets SIGNED

Reverse Engineering Gene Regulatory Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RetroNets project word cloud

Explore the words cloud of the RetroNets project. It provides you a very rough idea of what is the project "RetroNets" about.

native    microfluidic    nonetheless    nor    engineering    ultimately    promoter    phosphate    concentrations    integrate    details    grn    predictive    signal    fitness    cerevisiae    throughput    reverse    promoters    input    cellular    expression    made    components    network    grns    cas    biological    central    manner    deciphering    model    engineer    powerful    yeast    translating    zn    finger    cells    exact    regulation    engineered    master    disciplinary    poorly    incorporating    sequence    technologies    functional    achievement    mechanism    quantitative    appropriate    link    function    mapping    progress    considerable    copy    relationship    tf    computationally    crispr    output    gene    evolve    group    prerequisite    vitro    entire    orthogonal    topology    networks    quantitatively    trivial    transcription    phenotypes    computational    genome    signals    modulating    biology    optimized    inorganic    regulatory    predict    predicting    transcriptional    vivo   

Project "RetroNets" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙993˙858 €
 EC max contribution 1˙993˙858 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙993˙858.00

Map

 Project objective

Gene regulatory networks (GRNs) are an important cellular signal processing mechanism for translating input signals into appropriate phenotypes by modulating expression of the genome. The quantitative details of how cells process information through GRNs are still poorly understood, but of central importance in a large number of biological processes. Considerable progress has been made in mapping the topology of GRNs and more recently in deciphering the relationship between promoter sequence and function. Nonetheless, it is not yet possible to computationally predict the output of most native promoters, nor is it trivial to build promoters that integrate signals in a novel and predictive manner. Developing a quantitative understanding of transcriptional regulation, ultimately leading to the ability to predict entire GRNs will be a significant achievement and a prerequisite for our ability to engineer biological systems. I propose a multi-disciplinary approach incorporating biology, engineering, and computational modelling to improve our quantitative understanding by reverse engineering GRNs in S. cerevisiae. My research group has developed a powerful set of unique, high-throughput microfluidic technologies that enable the quantitative analysis of GRNs in vitro and in vivo. Specifically I propose to quantitatively investigate the yeast phosphate regulatory network and to develop a master model capable of predicting output of the network under various inorganic phosphate concentrations, to develop novel approaches for modulating GRNs using engineered Zn-finger transcription factors (TF) and CRISPR/Cas, to link GRN output to fitness in order to develop an understanding of how networks are optimized and evolve, and to reverse engineer an exact functional copy of the native phosphate regulatory network with orthogonal components.

 Publications

year authors and title journal last update
List of publications.
2019 Zoe Swank, Nadanai Laohakunakorn, Sebastian J. Maerkl
Cell-free gene-regulatory network engineering with synthetic transcription factors
published pages: 5892-5901, ISSN: 0027-8424, DOI: 10.1073/pnas.1816591116
Proceedings of the National Academy of Sciences 116/13 2020-04-24
2017 Kristina Woodruff, Sebastian J. Maerkl
Microfluidic Module for Real-Time Generation of Complex Multimolecule Temporal Concentration Profiles
published pages: 696-701, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.7b04099
Analytical Chemistry 90/1 2020-04-24
2018 Jui-Chia Chang, Zoe Swank, Oliver Keiser, Sebastian J. Maerkl, Esther Amstad
Microfluidic device for real-time formulation of reagents and their subsequent encapsulation into double emulsions
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-26542-x
Scientific Reports 8/1 2020-04-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RETRONETS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RETRONETS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

DeCoCt (2019)

Knowledge based design of complex synthetic microbial communities for plant protection

Read More