Opendata, web and dolomites

CerebellumTherapy

Sensorimotor plasticity in the cerebellar microcircuit and its therapeutic potential

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CerebellumTherapy project word cloud

Explore the words cloud of the CerebellumTherapy project. It provides you a very rough idea of what is the project "CerebellumTherapy" about.

association    mice    imaging    modifications    debilitating    interrogation    function    perturb    colour    neurons    structure    circuits    restore    underlie    fluorescent    simultaneously    independent    combining    causal    bridge    cortex    adaptive    human    insights    drive    outputs    operation    motor    neural    model    action    intervention    theories    manipulation    anatomy    applicable    disorders    modulating    neuronal    pervasive    malfunctioning    relevance    optogenetic    unknown    roles    learning    tackle    ultimately    refinement    mostly    ideal    probes    first    contribution    cellular    therapeutic    characterised    sensory    optogenetics    green    expression    brain    substantial    unprecedented    issue    clinical    red    probe    technique    deficits    disease    record    circuit    photon    operate    modal    satisfactory    underestimated    characterise    cerebellum    inputs    wild    dysregulated    cerebellar    modifying    causing    performing    manipulations    autism    experimental    resolution   

Project "CerebellumTherapy" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.dendrites.org/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2019-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Neural circuits operate to drive behaviour and can cause debilitating brain disorders when malfunctioning. However, how circuit activity is causing learning and action and which modifications underlie the development of a disease is mostly unknown. The cerebellum is an ideal structure to tackle this issue because of its well-characterised anatomy, established motor learning and control theories, and relevance to pervasive brain disorders like autism. However, our cellular and circuit-level understanding of the cerebellar roles in learning and modulating behaviour and in modifying disease is still not satisfactory, therefore the therapeutic potential of cerebellar intervention is underestimated. In this proposal, I will address this potential by combining multi-colour two-photon imaging and optogenetic interrogation in the cerebellar cortex of wild type and disease model mice performing a multi-sensory association task. My first goal is to characterise the circuit operation of the cerebellum at unprecedented resolution. I will record two identified neuronal inputs simultaneously using independent expression of green and red fluorescent probes in neurons in the cerebellar cortex to investigate how multi-modal sensory inputs are associated during motor adaptation. The second goal is to define detailed cerebellar circuit deficits by using above methods in autism model mice. Finally, I will establish the causal roles of these neuronal inputs for this adaptive behaviour. I will perturb these motor control- and learning-related neuronal inputs and outputs using optogenetics to probe their unique contribution. I will apply similar optogenetic manipulations to restore the function of the dysregulated cerebellar circuit in autism model mice. Ultimately, I will build a bridge between this experimental technique and a human-applicable method. Together, this project will provide substantial insights into the implementation and refinement of clinical cerebellar manipulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CEREBELLUMTHERAPY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CEREBELLUMTHERAPY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More  

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

ROAR (2019)

Investigating the Role of Attention in Reading

Read More