Opendata, web and dolomites


Voltage-sensing nanorods for super-resolution voltage imaging in neurons

Total Cost €


EC-Contrib. €






 NanoVoltSens project word cloud

Explore the words cloud of the NanoVoltSens project. It provides you a very rough idea of what is the project "NanoVoltSens" about.

advantage    action    signal    potentials    imaging    single    accomplished    characterization    optical    calcium    ibens    antoine    branch    spine    conductor    dr    lagging    ludwig    certain    insert    times    rods    electrical    anastasia    particle    extensive    applicable    record    infrared    emission    ns    neuronal    affords    temporal    voltage    simultaneously    nanorods    dynamics    points    vsnrs    targetable    triller    morphology    significantly    fast    validate    exceptional    dendritic    data    neurons    brain    decade    tools    last    advantages    initial    spectral    sensitivity    molecular    integration    multiple    shift    resolution    membrane    function    spikes    shifted    excellent    preliminary    optically    neurobiology    sites    ones    view    individual    brightness    fluctuations    ratiometric    spatial    invasively    spines    detection    sensor    designed    red    laboratory    self    performance    sensors    fundamentally    innovative    semi    calibrate    sensing    paris    near   

Project "NanoVoltSens" data sheet

The following table provides information about the project.


Organization address
address: RUE DE TOLBIAC 101
city: PARIS
postcode: 75654

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

In the last decade, the rapidly developing optical imaging field has significantly improved our understanding of information processing in the brain. Although a number of promising tools have been designed, sensors of membrane potential are lagging behind. In this project we aim to characterize an innovative voltage sensor for neurons that is fundamentally different from the existing ones. Our sensor is based on targetable voltage-sensing semi-conductor nanorods (vsNRs) that self-insert into the neuronal membrane. The rods optically and non-invasively record action potentials at the single particle level, at multiple sites, and across a large field-of-view. Such vsNRs offer unique advantages, including: (1) large voltage sensitivity, (2) ratiometric imaging based on a large spectral shift as function of voltage, (3) very fast response times in the range of ns, (4) very high brightness that affords single-particle detection, and (5) excellent performance in the near-infrared spectral range. The goal of this project is to validate, calibrate, and use vsNRs in neurons, focusing on dendritic spines and dendritic voltage spikes. After initial characterization of vsNRs in neurons, we will take advantage of the exceptional spatial and temporal resolution provided by vsNRs in order to access electrical properties of individual dendritic spines, as well as to make use of the red-shifted emission of vsNRs in order to record simultaneously membrane potential and calcium fluctuations at dendritic branch points. The project is to be accomplished in the laboratory of Dr. Antoine Triller at the IBENS, Paris by Dr. Anastasia Ludwig, who has extensive experience in molecular neurobiology, including analysis of dendritic spine morphology and dynamics. Based on our preliminary data, we are certain to be able to provide within two years a viable and user-friendly voltage-imaging technology that will be widely applicable for the study of signal integration in the brain.


year authors and title journal last update
List of publications.
2017 Omri Bar-Elli, Dan Steinitz, Gaoling Yang, Ron Tenne, Anastasia Ludwig, Yung Kuo, Antoine Triller, Shimon Weiss, Dan Oron
Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect
published pages: 2860-2867, ISSN: 2330-4022, DOI: 10.1021/acsphotonics.8b00206
ACS Photonics 5/7 2019-09-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOVOLTSENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOVOLTSENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

ComAlive (2019)

Diagnosis, prediction, communication and rehabilitation for patients with disorders of consciousness

Read More  

FreeDigital (2019)

The impact of 'free' digital offers on individual behavior and its implications for consumer and data protection laws

Read More