Opendata, web and dolomites

GrapheneBiosensor SIGNED

Electrochemical Graphene Sensors as Early Alert Tools for Algal Toxin Detection in Water

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GrapheneBiosensor project word cloud

Explore the words cloud of the GrapheneBiosensor project. It provides you a very rough idea of what is the project "GrapheneBiosensor" about.

harmful    followed    assays    prolonged    health    mc    massive    acute    damage    ppl    1998    manufacturing    chromatography    toxic    waste    physical    sophisticated    rapid    limit    exposure    concentration    run    had    pp2a    2a    confirmed    hplc    detect    expensive    detergents    animals    cyanobacteria    ing    electrochemically    lr    drinking    inhibiting    situ    world    quality    microcystin    mu    electrochemical    liver    frequently    purpose    ease    potentials    candidate    material    spectrometry    solutions    global    bodies    responsible    consuming    bio    sources    probably    blue    graphene    humans    anthropogenic    prevent    off    skills    liquid    organization    hemorrhage    conductivity    blooms    broad    ms    occurrence    performance    warming    microcystins    intrahepatic    mass    algae    area    instruments    laboratory    sensitive    worldwide    times    guideline    conventional    assigned    biosensors    active    potent    alternatives    algal    poisonings    water    biochemical    time    immune    provisional    immunosensors    electrical    aqueous    monitoring    contained    protein    urban    phosphatases    toxin    episodes    death    functionalization    surface    demanding    portable    agricultural    eutrophication    fit   

Project "GrapheneBiosensor" data sheet

The following table provides information about the project.

Coordinator
SWANSEA UNIVERSITY 

Organization address
address: SINGLETON PARK
city: SWANSEA
postcode: SA2 8PP
website: www.swan.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-09-26   to  2019-11-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SWANSEA UNIVERSITY UK (SWANSEA) coordinator 195˙454.00

Map

 Project objective

Episodes of harmful blue algae blooms and the associated algal toxin microcystin-LR (MC-LR) occur frequently in bodies of water worldwide as consequences of eutrophication resulting from anthropogenic activities such as agricultural run-off, urban waste, and manufacturing of detergents and global warming. It had been confirmed that microcystins were responsible for some poisonings of animals and humans where water sources contained toxic cyanobacteria blooms. Microcystins were potent and specific in inhibiting protein phosphatases 1 and 2A (PPl, PP2A). Acute or prolonged exposure to microcystins would cause liver damage, followed by a massive intrahepatic hemorrhage and probably leading to death. In 1998, the provisional guideline concentration limit of 1 μg/L MC-LR in drinking water was assigned by the World Health Organization (WHO). The development of reliable methods for monitoring MC-LR in water resources is of great interest to determine the occurrence and to prevent exposure to the toxin. Several methods have been developed to detect MC-LR, such as high-performance liquid chromatography/mass spectrometry (HPLC/MS) , bio-, biochemical- and immune-assays, which require long processing times, sophisticated instruments, complex procedures, or high processing cost and are in general used in the laboratory, not in situ. A sensitive, specific, simple, and rapid method for monitoring MC-LR could help to prevent exposure to the toxin. The unique physical and electrochemical properties (e.g., high electrical conductivity, ease of functionalization, high electrochemically active surface area, and broad range of working potentials in aqueous solutions) of graphene make them a candidate material for developing novel and fit-for-purpose electrochemical biosensors/immunosensors as alternatives to the time-consuming, expensive, non-portable and often skills-demanding conventional methods of analysis involved in water quality assessment.

 Publications

year authors and title journal last update
List of publications.
2018 Wei Zhang, Mike B. Dixon, Christopher Saint, Kar Seng Teng, Hiroaki Furumai
Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art
published pages: 1233-1245, ISSN: 2379-3694, DOI: 10.1021/acssensors.8b00359
ACS Sensors 3/7 2020-02-27
2018 Wei Zhang, Baoping Jia, Hiroaki Furumai
Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-28959-w
Scientific Reports 8/1 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAPHENEBIOSENSOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAPHENEBIOSENSOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

PaSION (2018)

A longitudinal assessment of treatment experience, symptoms and potential associations with biomarkers in cancer patients undergoing immune checkpoint inhibitor therapy

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More