Opendata, web and dolomites


Cyclical and Linear Timing Modes in Development

Total Cost €


EC-Contrib. €






 CYCLODE project word cloud

Explore the words cloud of the CYCLODE project. It provides you a very rough idea of what is the project "CYCLODE" about.

choices    gain    timing    larval    stem    ratio    timers    nematode    vivo    oscillations    biological    manifestation    deprivation    segmentation    recurring    coordinated    clocks    fates    developmental    genes    apparent    timer    organismal    worm    oscillates    prototypic    screens    times    genetic    little    roundworm    appropriate    cyclical    global    computational    nearly    coupling    microchamber    linear    medicine    cells    live    mechanisms    employing    elegans    worms    unknown    animal    combination    expression    patterning    regenerative    fate    20    architecture    understand    gained    advancing    tools    cyclic    imaging    resolution    additionally    reveal    tracking    fundamental    clock    cell    manipulations    wiring    genomic    proper    temporal    mrna    foresee    signal    food    molting    sequencing    noise    goals    perturbations    elucidate    regulatory    poorly    rhythmic    discovery    stage    transcriptome    heterochronic    vertebrate    individual    components    gene    events   

Project "CYCLODE" data sheet

The following table provides information about the project.


Organization address
city: BASEL
postcode: 4058

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙358˙625 €
 EC max contribution 2˙358˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme ERC-ADG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Organismal development requires proper timing of events such as cell fate choices, but the mechanisms that control temporal patterning remain poorly understood. In particular, we know little of the cyclical timers, or ‘clocks’, that control recurring events such as vertebrate segmentation or nematode molting. Furthermore, it is unknown how cyclical timers are coordinated with the global, or linear, timing of development, e.g. to ensure an appropriate number of cyclical repeats. We propose to elucidate the components, wiring, and properties of a prototypic developmental clock by studying developmental timing in the roundworm C. elegans. We build on our recent discovery that nearly 20% of the worm’s transcriptome oscillates during larval development – an apparent manifestation of a clock that times the various recurring events that encompass each larval stage. Our aims are i) to identify components of this clock using genetic screens, ii) to gain insight into the system’s architecture and properties by employing specific perturbations such as food deprivation, and iii) to understand the coupling of this cyclic clock to the linear heterochronic timer through genetic manipulations. To achieve our ambitious goals, we will develop tools for mRNA sequencing of individual worms and for their developmental tracking and microchamber-based imaging. These important advances will increase temporal resolution, enhance signal-to-noise ratio, and achieve live tracking of oscillations in vivo. Our combination of genetic, genomic, imaging, and computational approaches will provide a detailed understanding of this clock, and biological timing mechanisms in general. As heterochronic genes and rhythmic gene expression are also important for controlling stem cell fates, we foresee that the results gained will additionally reveal regulatory mechanisms of stem cells, thus advancing our fundamental understanding of animal development and future applications in regenerative medicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CYCLODE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CYCLODE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PSYDISC (2020)

Developing and Testing the Psychological Distance to Science Model

Read More  

ImmUne (2019)

Towards identification of the unifying principles of vertebrate adaptive immunity

Read More  

OptimHist (2020)

Optimization and historical contingency in living systems: a biophysical approach

Read More