Opendata, web and dolomites

MuStMAM SIGNED

Multi State Memory in Artificial Multiferroics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MuStMAM project word cloud

Explore the words cloud of the MuStMAM project. It provides you a very rough idea of what is the project "MuStMAM" about.

our    device    interface    levels    tunnel    multiple    nanoscale    excited    artificial    investing    degree    enormous    gmr    digital    fm    material    size    transport    film    quality    miniaturisation    overcome    tmr    resistive    heterostructure    layer    multiferroic    prospect    ferromagnetic    becomes    area    antiferromagnetic    tunneling    single    limitations    store    technologies    approaching    density    demand    opportunity    argument    2020    memory    junctions    giant    unveil    doubling    cambridge    stored    creates    data    outside    ter    add    universe    multistate    creation    market    materials    resistance    effect    university    eb    electric    marketable    generation    bias    fe    continues    ferroelectric    nearly    coupling    contain    distance    storage    thin    electro    additional    physical    magnetoelectric    adjacent    mftj    electronic    dimension    magneto    sustain    ferroic    groups    stars    bits    exchange    position    coupled    smaller   

Project "MuStMAM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-03-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Our digital universe is doubling in size every two years, so that by 2020, it will contain nearly as many digital bits as there are stars in our physical universe! Existing memory technologies are approaching their physical storage limitations as miniaturisation of electronic devices continues. This requires significant development of advanced next generation data storage technologies to sustain consumer demand for increasing levels of data creation. New materials and technology to store more data in smaller area are required. There is a strong argument in favour of investing in multiferroic material that is still at a distance from a marketable position. In this proposed project we will investigate the prospect of exchange bias coupled artificial multiferroic material for high density memory device to overcome the market demand. In recent research, multiferroic tunnel junctions (MFTJ) have excited enormous interest for high-density memory devices. In this project, we propose a heterostructure of ferromagnetic (FM) and ferroelectric (FE) materials where the interface becomes antiferromagnetic layer and creates exchange bias (EB) coupling with adjacent FM layer. Due to induced EB, the system will add additional functionality giant magneto resistance (GMR) along with tunneling electro-resistance (TER) and magneto-resistance (TMR) in a single MFTJ, and allow multiple resistive states per memory element at very low dimension where multiple bits can be stored. During the proposed project magnetoelectric process in artificial multiferroic systems will be investigated to unveil possible nanoscale coupling between different ferroic parameters, magneto-electric transport processes and effect of exchange bias on them. Heterostructure thin film with high degree of quality will be studied aiming high density multistate memory device. The project will offer the opportunity to work in collaboration with other research groups both within and outside the University of Cambridge.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSTMAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSTMAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More