Opendata, web and dolomites

MuStMAM SIGNED

Multi State Memory in Artificial Multiferroics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MuStMAM project word cloud

Explore the words cloud of the MuStMAM project. It provides you a very rough idea of what is the project "MuStMAM" about.

outside    effect    levels    interface    investing    magnetoelectric    multiple    single    creates    giant    data    store    doubling    transport    university    contain    approaching    market    ferroelectric    physical    prospect    creation    material    multistate    fe    tunnel    add    smaller    film    opportunity    quality    stored    storage    bits    excited    materials    fm    technologies    groups    coupled    magneto    overcome    junctions    distance    electro    size    memory    universe    nearly    degree    heterostructure    generation    gmr    mftj    antiferromagnetic    ter    enormous    demand    our    miniaturisation    resistive    unveil    cambridge    density    device    multiferroic    sustain    position    2020    marketable    adjacent    resistance    artificial    eb    digital    bias    thin    becomes    stars    continues    argument    layer    electric    tunneling    limitations    exchange    additional    ferroic    dimension    area    tmr    ferromagnetic    nanoscale    electronic    coupling   

Project "MuStMAM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-03-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Our digital universe is doubling in size every two years, so that by 2020, it will contain nearly as many digital bits as there are stars in our physical universe! Existing memory technologies are approaching their physical storage limitations as miniaturisation of electronic devices continues. This requires significant development of advanced next generation data storage technologies to sustain consumer demand for increasing levels of data creation. New materials and technology to store more data in smaller area are required. There is a strong argument in favour of investing in multiferroic material that is still at a distance from a marketable position. In this proposed project we will investigate the prospect of exchange bias coupled artificial multiferroic material for high density memory device to overcome the market demand. In recent research, multiferroic tunnel junctions (MFTJ) have excited enormous interest for high-density memory devices. In this project, we propose a heterostructure of ferromagnetic (FM) and ferroelectric (FE) materials where the interface becomes antiferromagnetic layer and creates exchange bias (EB) coupling with adjacent FM layer. Due to induced EB, the system will add additional functionality giant magneto resistance (GMR) along with tunneling electro-resistance (TER) and magneto-resistance (TMR) in a single MFTJ, and allow multiple resistive states per memory element at very low dimension where multiple bits can be stored. During the proposed project magnetoelectric process in artificial multiferroic systems will be investigated to unveil possible nanoscale coupling between different ferroic parameters, magneto-electric transport processes and effect of exchange bias on them. Heterostructure thin film with high degree of quality will be studied aiming high density multistate memory device. The project will offer the opportunity to work in collaboration with other research groups both within and outside the University of Cambridge.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSTMAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSTMAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More