Opendata, web and dolomites

MuStMAM SIGNED

Multi State Memory in Artificial Multiferroics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MuStMAM project word cloud

Explore the words cloud of the MuStMAM project. It provides you a very rough idea of what is the project "MuStMAM" about.

electronic    interface    enormous    bias    approaching    fm    resistive    quality    additional    degree    resistance    antiferromagnetic    creation    creates    opportunity    multiple    limitations    stars    device    groups    adjacent    university    generation    heterostructure    film    physical    effect    artificial    tunnel    cambridge    multistate    materials    tmr    magneto    electric    ferroic    becomes    argument    sustain    stored    bits    continues    electro    ter    coupling    market    position    multiferroic    thin    ferroelectric    technologies    data    magnetoelectric    our    marketable    universe    density    dimension    prospect    transport    demand    size    investing    add    distance    layer    coupled    doubling    2020    gmr    area    ferromagnetic    giant    tunneling    nearly    exchange    miniaturisation    eb    overcome    fe    memory    junctions    digital    single    nanoscale    outside    smaller    levels    contain    mftj    store    unveil    excited    storage    material   

Project "MuStMAM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-03-13

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Our digital universe is doubling in size every two years, so that by 2020, it will contain nearly as many digital bits as there are stars in our physical universe! Existing memory technologies are approaching their physical storage limitations as miniaturisation of electronic devices continues. This requires significant development of advanced next generation data storage technologies to sustain consumer demand for increasing levels of data creation. New materials and technology to store more data in smaller area are required. There is a strong argument in favour of investing in multiferroic material that is still at a distance from a marketable position. In this proposed project we will investigate the prospect of exchange bias coupled artificial multiferroic material for high density memory device to overcome the market demand. In recent research, multiferroic tunnel junctions (MFTJ) have excited enormous interest for high-density memory devices. In this project, we propose a heterostructure of ferromagnetic (FM) and ferroelectric (FE) materials where the interface becomes antiferromagnetic layer and creates exchange bias (EB) coupling with adjacent FM layer. Due to induced EB, the system will add additional functionality giant magneto resistance (GMR) along with tunneling electro-resistance (TER) and magneto-resistance (TMR) in a single MFTJ, and allow multiple resistive states per memory element at very low dimension where multiple bits can be stored. During the proposed project magnetoelectric process in artificial multiferroic systems will be investigated to unveil possible nanoscale coupling between different ferroic parameters, magneto-electric transport processes and effect of exchange bias on them. Heterostructure thin film with high degree of quality will be studied aiming high density multistate memory device. The project will offer the opportunity to work in collaboration with other research groups both within and outside the University of Cambridge.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSTMAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSTMAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More