Opendata, web and dolomites

TurbDDT SIGNED

Predicting flame acceleration and deflagration to detonation transition in industrial scale explosions incorporating the turbulence effects

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TurbDDT project word cloud

Explore the words cloud of the TurbDDT project. It provides you a very rough idea of what is the project "TurbDDT" about.

solver    deflagration    explosions    differences    involve    structures    occurs    dns    er    ing    interruption    gradients    obstacles    despite    shown    nature    global    simulations    missing    les    acceleration    reactive    model    smooth    conduct    flame    scales    investigations    lacks    medium    profound    predict    tf    disseminate    draw    chemical    concentration    gain    physical    eddy    numerical    capability    gaps    incorporating    experimental    uniform    repeat    explosives    fill    ddt    shade    provisions    channels    scientific    communicate    guidelines    tubes    fires    mixtures    light    transition    techniques    business    frequency    turbddt    influences    host    interpret    linear    industrial    fa    practical    compressible    mechanisms    insufficient    detonation    explosion    gas    safety    clem    statistics    capture    transfer    crs    efficient    continue    predicted    predictions    turbulence    stringent    audiences    predictive   

Project "TurbDDT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00

Map

 Project objective

Statistics show that fires and explosions are the top cause of Business Interruption loss. Despite increasingly stringent safety measures, explosions continue to occur with higher frequency and consequences especially when Deflagration to Detonation Transition (DDT) occurs. Flame acceleration (FA) and DDT involve complex physical and chemical processes. Current provisions for explosion safety design are based on mechanisms for explosives and insufficient to interpret the complex nature of gas explosions. Their use in safety design is problematic.

DNS predictions have shown the importance of TF on FA and DDT in uniform mixtures. Such influences are likely to be even more profound in mixtures with concentration gradients and when obstacles are present. There lacks experimental and numerical investigations to shade light on this. Robust and efficient predictive techniques which can capture global safety features associated with FA and DDT as well as TF are also missing. TurbDDT aims to fill these knowledge gaps. It aims to predict FA and DDT in industrial scale explosions incorporating the turbulence effects. The specific scientific objectives include:

1. To gain insight of TF on FA and DDT in smooth channels/tubes with uniform mixtures and mixtures with concentration gradients using DNS; 2. To repeat the above in channels/tubes with obstacles; 3. To assess the capability of the compressible linear eddy model in large eddy simulations (CLEM-LES) for medium scale simulations and compressible reactive solver (CRS) for large scales; 4. To conduct large scale FA and DDT of practical scales and assess the resulting differences in the predicted likelihood of DDT and explosion impact on structures when the more efficient CRS approach is used; and to draw conclusions and guidelines on large scale FA and DDT predictions. 5. Foster a two-way transfer of knowledge between the ER and host; and 6. Disseminate and communicate TurbDDT results to wider audiences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TURBDDT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TURBDDT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More