Opendata, web and dolomites

TurbDDT SIGNED

Predicting flame acceleration and deflagration to detonation transition in industrial scale explosions incorporating the turbulence effects

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TurbDDT project word cloud

Explore the words cloud of the TurbDDT project. It provides you a very rough idea of what is the project "TurbDDT" about.

smooth    host    crs    capability    predicted    audiences    capture    structures    fa    gain    eddy    disseminate    interpret    predict    channels    predictive    insufficient    dns    conduct    explosions    concentration    reactive    incorporating    practical    tubes    experimental    interruption    tf    involve    les    global    obstacles    explosives    investigations    mixtures    communicate    safety    guidelines    chemical    detonation    differences    stringent    clem    uniform    ddt    mechanisms    medium    repeat    missing    nature    compressible    shown    lacks    er    transition    draw    profound    gas    techniques    provisions    despite    flame    acceleration    business    industrial    solver    light    occurs    fill    influences    numerical    continue    simulations    turbulence    explosion    transfer    statistics    efficient    ing    shade    gaps    scales    physical    deflagration    linear    model    scientific    frequency    gradients    turbddt    fires    predictions   

Project "TurbDDT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00

Map

 Project objective

Statistics show that fires and explosions are the top cause of Business Interruption loss. Despite increasingly stringent safety measures, explosions continue to occur with higher frequency and consequences especially when Deflagration to Detonation Transition (DDT) occurs. Flame acceleration (FA) and DDT involve complex physical and chemical processes. Current provisions for explosion safety design are based on mechanisms for explosives and insufficient to interpret the complex nature of gas explosions. Their use in safety design is problematic.

DNS predictions have shown the importance of TF on FA and DDT in uniform mixtures. Such influences are likely to be even more profound in mixtures with concentration gradients and when obstacles are present. There lacks experimental and numerical investigations to shade light on this. Robust and efficient predictive techniques which can capture global safety features associated with FA and DDT as well as TF are also missing. TurbDDT aims to fill these knowledge gaps. It aims to predict FA and DDT in industrial scale explosions incorporating the turbulence effects. The specific scientific objectives include:

1. To gain insight of TF on FA and DDT in smooth channels/tubes with uniform mixtures and mixtures with concentration gradients using DNS; 2. To repeat the above in channels/tubes with obstacles; 3. To assess the capability of the compressible linear eddy model in large eddy simulations (CLEM-LES) for medium scale simulations and compressible reactive solver (CRS) for large scales; 4. To conduct large scale FA and DDT of practical scales and assess the resulting differences in the predicted likelihood of DDT and explosion impact on structures when the more efficient CRS approach is used; and to draw conclusions and guidelines on large scale FA and DDT predictions. 5. Foster a two-way transfer of knowledge between the ER and host; and 6. Disseminate and communicate TurbDDT results to wider audiences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TURBDDT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TURBDDT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

POSPORI (2019)

Polymer Optical Sensors for Prolonged Overseeing the Robustness of civil Infrastructures

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

SingleCellAI (2019)

Deep-learning models of CRISPR-engineered cells define a rulebook of cellular transdifferentiation

Read More