Opendata, web and dolomites

NERUDA SIGNED

Numerical and ERT stUdies for Diffusive and Advective high-enthalpy systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NERUDA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 175˙419.00

Map

 Project objective

The full development of geothermal energy is still hindered by the little knowledge available on the distribution of high-enthalpy fluids at depth and by the often-complex logistics. High-enthalpy hydrothermal systems preferentially develop in tectonically active and volcanic settings. In such environments, faults have a major control on fluid flow and may affects the overall fluid distribution at depth. However, due to the lack of in situ data, predicting the role of faults on fluid flow is challenging and often requires complementary methods. NERUDA proposes an innovative and multidisciplinary approach, combining numerical simulations of fluid flow with deep Electric Resistivity Tomography (ERT). The project aims at constraining the tectonic control on fluid flow in hydrothermal systems. High-enthalpy environments often have a multi-layered structure with deep reservoirs (>300 m). Classical cable-structured ERT methods cannot reach such depths. To tackle this challenge, NERUDA will use a leading-edge technology in the field of ERT methods. The newly developed IRIS Fullwaver system allows the acquisition of deep (up to ~1 km) 3D ERT surveys. This wireless system can be deployed in areas with sharp topography (e.g. volcanoes) where classical ERT is logistically not possible. Numerical simulations of fluid flow, calibrated on the interpreted ERT surveys, will be performed to assess the fault control on fluid flow. The currently available flow simulators are either not user-friendly or lack some functionalities to adequately study high-enthalpy hydrothermal systems. NERUDA will develop an open-source, user-friendly MATLAB hydrothermal module calibrated on deep ERT to investigate high-enthalpy hydrothermal systems. This module will be implemented in the world-widely used, open-source MRST (MATLAB Reservoir Simulation Toolbox). NERUDA is expected to have a strong impact on the scientific community by widening the accessibility to user-friendly numerical tools.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NERUDA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NERUDA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

AMPLE (2019)

A Study of the Notion of Ampleness in Model Theory and Tits Buildings

Read More  

CIGNUS (2019)

CuInGaSe Nanowires Under the Sun

Read More