Opendata, web and dolomites

SELFSENS SIGNED

Printed SELF-power platform for gas SENSing monitoring

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SELFSENS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE GRANADA 

Organization address
address: CUESTA DEL HOSPICIO SN
city: GRANADA
postcode: 18071
website: www.ugr.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 170˙121 €
 EC max contribution 170˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2021-05-24

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE GRANADA ES (GRANADA) coordinator 170˙121.00

Map

 Project objective

The final aim of this project is to develop an autonomous gas sensor system capable of discriminating among different vapour species. Looking at the attractive characteristics of reduced graphene oxide, we should look for their functionalization in order to increase their selectivity to a concrete gas while decreasing it to others. Furthermore, the design of sensor arrays together with pattern recognition algorithms will be investigated in order to develop a highly selective sensory device towards different gas molecules. Moreover, the whole manufacturing of these sensors will be done by printing and laser scribing techniques because of the large amount of characteristics that this technology offers to electronics circuits (e.g. large-scale fabrication, lightweight, flexibility). In addition to this, the sensing layer should be recovered in order to have a fast response of the sensor to force the trapped molecules to escape. This issue will be also addressed compromising time response and power demand. In this project, we propose the inclusion of energy harvesting approach together with a storage element in order to reduce this consumption or even to achieve a self-powered sensory system. A key point of this strategy will be to employ the same fabrication processes as the used for the manufacturing of the gas sensors. Finally, the whole system will be to include it in a larger system, adding the required circuitry and communication module with the aim of performing environmental monitoring in different scenarios such as industry or building comfort. For example, the inclusion of a gas sensing platform can control and adjust the proper work environment conditions. This solution can not only enhance the quality of working conditions but also to reduce cost and pollution, being profitable for employers, employees and society.

 Publications

year authors and title journal last update
List of publications.
2018 Francisco Romero, Alfonso Salinas-Castillo, Almudena Rivadeneyra, Andreas Albrecht, Andres Godoy, Diego Morales, Noel Rodriguez
In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates
published pages: 517, ISSN: 2079-4991, DOI: 10.3390/nano8070517
Nanomaterials 8/7 2019-11-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELFSENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SELFSENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

PARTOWNEU (2019)

The dark side of partial ownership and financial investment in Europe: What price to pay for consumers and society?

Read More