Opendata, web and dolomites

UltraLVP SIGNED

Chemistry and transport properties of bridgmanite controlling lower-mantle dynamics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "UltraLVP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT BAYREUTH 

Organization address
address: UNIVERSITATSSTRASSE 30
city: BAYREUTH
postcode: 95447
website: www.uni-bayreuth.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙642˙120 €
 EC max contribution 2˙642˙120 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BAYREUTH DE (BAYREUTH) coordinator 2˙642˙120.00

Map

 Project objective

Seismic observations imply that slab descent and plume ascent are impeded in the mid-mantle (MM) (depths of 660–1000 km, pressures of 23–40 GPa). A recent evaluation of viscosity variation suggested the presence of a viscosity increase or maximum in the MM that could drag the slab and plume motions. The viscosity variation may be caused by a change in the rheology of bridgmanite (Brg), the dominant mineral in the lower mantle (LM). The absence of seismic anisotropy suggests the dominance of diffusion creep in the majority of the LM. Element diffusivities and grain size are two essential factors of diffusion creep, and defect chemistry controls diffusivity. Hence, this project will determine defect chemistry, diffusivity and the grain growth rate of Brg. Since plume ascent originates in deep parts in the LM, these three properties need to be determined at pressures up to 80 GPa. Although use of a large-volume press (LVP) is vital for obtaining reliable high-pressure experimental data on mineral and rock properties, conventional LVP with carbide anvils can only generate 27 GPa. Recent LVP technology can generate over 100 GPa using sintered diamond (SD) anvils, but the process is currently very difficult for practical use. We developed a method to generate 50 GPa using hard carbide (HWC) anvils that allows practical investigation of Brg properties at mantle temperatures. We will investigate the three properties of Brg up to 50 GPa using LVP with HWC. We will develop LVP technology with SD to reliably generate pressures up to 80 GPa at mantle temperatures, and we will investigate the Brg properties under these conditions. These data will enable numerical modelling of slab and plume dynamics to explain the seismic observations. Through such modelling, we will investigate how materials are transported between the surface and deep mantle reservoirs, which can provide insight into Earth’s evolution and surface habitability.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTRALVP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTRALVP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LiLI (2020)

Later Life Intimacy: Women’s Unruly Practices, Spaces and Representations

Read More  

POAB (2019)

The Psychology of Administrative Burden

Read More  

MIX2FIX (2019)

Hybrid, organic-inorganic chalcogenide optoelectronics

Read More