Opendata, web and dolomites

SPECs SIGNED

Sustainable plasmon-enhanced catalysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPECs project word cloud

Explore the words cloud of the SPECs project. It provides you a very rough idea of what is the project "SPECs" about.

localized    photochemical    contribution    surfaces    energy    resonances    incompatible    predicted    revealing    au    catalysts    prohibitive    agricultural    concurrently    numerical    photochemistry    worldwide    al    abundant    nanostructures    unsustainable    barriers    cleanly    mg    organic    hope    lower    sustainable    synthetic    model    dream    earth    devised    metal    constructed    concentrates    plasmon    reactions    closer    industrial    chemicals    inorganic    world    power    exclusively    guide    multimetallic    advancing    almost    fossil    staggering    unravelling    surface    provides    catalytic    hot    electrons    few    enhanced    light    relying    reliance    cheap    experimental    nanoparticles    made    sun    choreograph    concentrate    molecular    sustain    plasmonic    traps    industries    relative    meanwhile    efficient    catalysis    material    chemical    heat    na    synthesize    amongst    rare    alternatives    delivered    lowering    utilized    trapping    electron    materials    fuels       lsprs    ag    oscillations    understand    fundamental    practices    sustainably    metals    mainly    intelligently   

Project "SPECs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙596˙481 €
 EC max contribution 1˙596˙481 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙596˙481.00

Map

 Project objective

Industries creating inorganic, organic, and agricultural chemicals use a staggering 4.2% of the worldwide delivered energy, mainly from unsustainable fossil fuels. Meanwhile, the sun provides energy that could be utilized to power photochemical reactions sustainably and cleanly. Recent advances revealing how localized surface plasmon resonances (LSPRs), light-driven electron oscillations in metal nanoparticles, can concentrate light at the molecular scale made the dream of efficient photochemistry one step closer. However, plasmonic materials are almost exclusively constructed from the rare and unsustainable metals Ag and Au. In addition to being incompatible with current industrial practices relying on catalytic surfaces to lower energy barriers and guide reactions, Ag and Au cause prohibitive cost challenges for real-world applications. But there is hope: several of the few metals predicted to sustain LSPRs and become potential alternatives to Ag and Au are amongst the most abundant, i.e. sustainable, elements on Earth (Al, Mg, Na, K). The way forward, and key objective of my proposal, is thus to design, synthesize, and understand multimetallic nanostructures where a cheap, Earth-abundant plasmonic material traps and concentrates (sun)light directly at a catalytic surface to efficiently and intelligently power and choreograph chemical reactions. To achieve this ambitious goal, I devised a project concurrently advancing important aspects of sustainable plasmon-enhanced catalysis, from the development of two synthetic approaches for Earth-abundant plasmonic-catalysts, to the fundamental studies of light-trapping in these new materials with state-of-the-art numerical and experimental approaches and the unravelling of the relative contribution of plasmon-generated hot electrons, enhanced field, and heat using key model chemical reactions. These results will help develop a more sustainable future by lowering our reliance on both fossil fuels and rare metals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPECS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPECS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

AST (2019)

Automatic System Testing

Read More