Opendata, web and dolomites

StratifiedGRANULAR SIGNED

Modelling of rheologically stratified granular flows by a multi-layer depth-averaged approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StratifiedGRANULAR project word cloud

Explore the words cloud of the StratifiedGRANULAR project. It provides you a very rough idea of what is the project "StratifiedGRANULAR" about.

pattern    experimental    scheme    finite    local    resilience    constitutive    velocity    dense    model    tool    attached    volume    direction    previously    superimposition    rheologically    topography    curvilinear    numerical    hazardous    line    regimes    suitable    rheological    computational    physics    granular    strict    capturing    avalanches    human    layer    devoted    indicates    properly    coordinates    data    validation    flows    conservative    incorporated    serious    climate    infrastructures    priorities    ing    completely    equations    occurrence    fraction    dynamics    theories    regards    hyperbolicity    form    proper    dimensional    stratified    numerically    solid    basal    investigations    designed    flow    curvature    fluid    gathered    wise    force    momentum    multidisciplinary    hazard    showed    law    hazards    chains    geophysical    stage    capture    rock    dry    life    describing    sustainable    computationally    natural    lower    mathematical    last    exhibit    averaged    models    settlements    interstitial    debris   

Project "StratifiedGRANULAR" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAT DARMSTADT 

Organization address
address: KAROLINENPLATZ 5
city: DARMSTADT
postcode: 64289
website: www.tu-darmstadt.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAT DARMSTADT DE (DARMSTADT) coordinator 159˙460.00

Map

 Project objective

Geophysical granular flows, like rock avalanches and debris flows, represent a serious hazard to life and infrastructures in Europe. Yet their dynamics is still far from being completely understood. Recent experimental investigations on granular flows showed that velocity and solid volume fraction exhibit a stratified pattern along the flow depth. This indicates the superimposition of different rheological regimes. Moreover, non-local rheological theories have been recently proposed for capturing momentum exchanges, driven by the occurrence of force chains. The present multidisciplinary project aims at developing a computationally cost-effective multi-layer depth-averaged model for describing rheologically stratified granular flows. The model, having much lower computational costs than three-dimensional models, will be designed to capture the essential physics of granular flows in the depth-wise direction. To properly take into account the curvature effects due to basal topography, the model equations will be derived in curvilinear coordinates attached to the topography. Moreover, a suitable non-local constitutive law will be incorporated. The resulting equations will be numerically integrated by a proper finite volume scheme, taking into account their main mathematical properties, i.e. non-strict hyperbolicity and non-conservative form. The model validation will be carried out by using a wide experimental data set, previously gathered by the applicant on dry granular flows. The last stage of the project is devoted to extending the multi-layer approach to cases with dense interstitial fluid, so as to allow its application to debris flows. In line with H2020 priorities, especially as regards sustainable human settlements and their resilience to natural hazards due to climate changes, the project has the potential to provide an advanced mathematical-numerical tool for better identifying the hazardous areas associated with avalanches and debris flows.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRATIFIEDGRANULAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRATIFIEDGRANULAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MITafterVIT (2020)

Unravelling maintenance mechanisms of immune tolerance after termination of venom immunotherapy by means of clonal mast cell diseases

Read More  

deCrYPtion (2019)

Decrypting Mycobacterium cytochrome P450 (CYP) physiological functions by testing hypotheses emitted form large-scale comparative genomics analysis

Read More  

FARMACCOUNTA (2019)

Farm Accountancy Data as a Source for the History of European Agriculture

Read More