Opendata, web and dolomites

LeaRNN SIGNED

Principles of Learning in a Recurrent Neural Network

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LeaRNN project word cloud

Explore the words cloud of the LeaRNN project. It provides you a very rough idea of what is the project "LeaRNN" about.

map    represented    fundamental    updating    datasets    teaching    neurons    intact    mushroom    preliminary    discover    constrained    generating    uniquely    revolutionize    feedforward    extinguish    unknown    learning    robotics    circuitry    animals    motifs    body    signals    associative    multilayered    compute    neural    consolidate    nervous    errors    match    resolution    living    recurrent    candidate    signal    animal    drives    machine    neuroscience    longer    generate    drosophila    larval    kingdom    model    prediction    predictions    monosynaptic    actual    building    functions    computation    drive    medicine    theoretical    models    obtain    connectome    algorithms    synaptic    entire    principles    maps    connections    dopaminergic    provides    upstream    circuits    updates    memory    manipulating    implementing    memories    larva    insect    time    forming    first    feedback    form    functional    circuit    layer    distributed    cellular    selectively    tractable    basic    brain    sufficiency   

Project "LeaRNN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙350˙000 €
 EC max contribution 2˙350˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙350˙000.00

Map

 Project objective

Forming memories, generating predictions based on memories, and updating memories when predictions no longer match actual experience are fundamental brain functions. Dopaminergic neurons provide a so-called “teaching signal” that drives the formation and updates of associative memories across the animal kingdom. Many theoretical models propose how neural circuits could compute the teaching signals, but the actual implementation of this computation in real nervous systems is unknown. This project will discover the basic principles by which neural circuits compute the teaching signals that drive memory formation and updates using a tractable insect model system, the Drosophila larva. We will generate, for the first time in any animal, the following essential datasets for a distributed, multilayered, recurrent learning circuit, the mushroom body-related circuitry in the larval brain. First, building on our preliminary work that provides the synaptic-resolution connectome of the circuit, including all feedforward and feedback pathways upstream of all dopaminergic neurons, we will generate a map of functional monosynaptic connections. Second, we will obtain cellular-resolution whole-nervous system activity maps in intact living animals, as they form, extinguish, or consolidate memories to discover the features represented in each layer of the circuit (e.g. predictions, actual reinforcement, and prediction errors), the learning algorithms, and the candidate circuit motifs that implement them. Finally, we will develop a model of the circuit constrained by these datasets and test the predictions about the necessity and sufficiency of uniquely identified circuit elements for implementing learning algorithms by selectively manipulating their activity. Understanding the basic functional principles of an entire multilayered recurrent learning circuit in an animal has the potential to revolutionize, not only neuroscience and medicine, but also machine-learning and robotics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEARNN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEARNN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QLite (2019)

Quantum Light Enterprise

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More