Opendata, web and dolomites

LeaRNN SIGNED

Principles of Learning in a Recurrent Neural Network

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LeaRNN project word cloud

Explore the words cloud of the LeaRNN project. It provides you a very rough idea of what is the project "LeaRNN" about.

brain    principles    feedforward    circuitry    neuroscience    connectome    signals    functions    animal    errors    candidate    longer    basic    discover    constrained    circuits    compute    drosophila    feedback    kingdom    mushroom    resolution    models    selectively    circuit    datasets    maps    obtain    insect    functional    actual    teaching    living    sufficiency    monosynaptic    revolutionize    distributed    medicine    unknown    larval    neural    first    updates    consolidate    map    larva    building    extinguish    upstream    signal    multilayered    theoretical    form    machine    represented    algorithms    learning    body    associative    cellular    generating    layer    provides    memories    updating    robotics    match    synaptic    manipulating    model    memory    connections    predictions    fundamental    recurrent    entire    generate    tractable    intact    computation    preliminary    animals    forming    implementing    uniquely    time    prediction    neurons    dopaminergic    drives    motifs    drive    nervous   

Project "LeaRNN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙350˙000 €
 EC max contribution 2˙350˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙350˙000.00

Map

 Project objective

Forming memories, generating predictions based on memories, and updating memories when predictions no longer match actual experience are fundamental brain functions. Dopaminergic neurons provide a so-called “teaching signal” that drives the formation and updates of associative memories across the animal kingdom. Many theoretical models propose how neural circuits could compute the teaching signals, but the actual implementation of this computation in real nervous systems is unknown. This project will discover the basic principles by which neural circuits compute the teaching signals that drive memory formation and updates using a tractable insect model system, the Drosophila larva. We will generate, for the first time in any animal, the following essential datasets for a distributed, multilayered, recurrent learning circuit, the mushroom body-related circuitry in the larval brain. First, building on our preliminary work that provides the synaptic-resolution connectome of the circuit, including all feedforward and feedback pathways upstream of all dopaminergic neurons, we will generate a map of functional monosynaptic connections. Second, we will obtain cellular-resolution whole-nervous system activity maps in intact living animals, as they form, extinguish, or consolidate memories to discover the features represented in each layer of the circuit (e.g. predictions, actual reinforcement, and prediction errors), the learning algorithms, and the candidate circuit motifs that implement them. Finally, we will develop a model of the circuit constrained by these datasets and test the predictions about the necessity and sufficiency of uniquely identified circuit elements for implementing learning algorithms by selectively manipulating their activity. Understanding the basic functional principles of an entire multilayered recurrent learning circuit in an animal has the potential to revolutionize, not only neuroscience and medicine, but also machine-learning and robotics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEARNN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEARNN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More