Opendata, web and dolomites

LeaRNN SIGNED

Principles of Learning in a Recurrent Neural Network

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LeaRNN project word cloud

Explore the words cloud of the LeaRNN project. It provides you a very rough idea of what is the project "LeaRNN" about.

extinguish    uniquely    dopaminergic    animals    maps    updates    cellular    mushroom    neuroscience    map    implementing    building    constrained    candidate    monosynaptic    neural    tractable    multilayered    drives    recurrent    living    revolutionize    unknown    motifs    connectome    form    learning    circuits    entire    match    theoretical    predictions    longer    models    resolution    drive    intact    forming    datasets    first    nervous    connections    consolidate    signal    provides    model    neurons    distributed    compute    associative    drosophila    functions    feedback    larval    feedforward    manipulating    generating    memories    circuitry    discover    signals    preliminary    robotics    selectively    updating    sufficiency    fundamental    medicine    upstream    circuit    algorithms    machine    animal    brain    larva    generate    represented    prediction    time    synaptic    memory    errors    basic    layer    actual    obtain    kingdom    functional    computation    teaching    body    insect    principles   

Project "LeaRNN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙350˙000 €
 EC max contribution 2˙350˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 2˙350˙000.00

Map

 Project objective

Forming memories, generating predictions based on memories, and updating memories when predictions no longer match actual experience are fundamental brain functions. Dopaminergic neurons provide a so-called “teaching signal” that drives the formation and updates of associative memories across the animal kingdom. Many theoretical models propose how neural circuits could compute the teaching signals, but the actual implementation of this computation in real nervous systems is unknown. This project will discover the basic principles by which neural circuits compute the teaching signals that drive memory formation and updates using a tractable insect model system, the Drosophila larva. We will generate, for the first time in any animal, the following essential datasets for a distributed, multilayered, recurrent learning circuit, the mushroom body-related circuitry in the larval brain. First, building on our preliminary work that provides the synaptic-resolution connectome of the circuit, including all feedforward and feedback pathways upstream of all dopaminergic neurons, we will generate a map of functional monosynaptic connections. Second, we will obtain cellular-resolution whole-nervous system activity maps in intact living animals, as they form, extinguish, or consolidate memories to discover the features represented in each layer of the circuit (e.g. predictions, actual reinforcement, and prediction errors), the learning algorithms, and the candidate circuit motifs that implement them. Finally, we will develop a model of the circuit constrained by these datasets and test the predictions about the necessity and sufficiency of uniquely identified circuit elements for implementing learning algorithms by selectively manipulating their activity. Understanding the basic functional principles of an entire multilayered recurrent learning circuit in an animal has the potential to revolutionize, not only neuroscience and medicine, but also machine-learning and robotics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEARNN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEARNN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More