Opendata, web and dolomites

MICROPATH SIGNED

The fate and persistence of microplastics and associated pathogens in lowland rivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MICROPATH project word cloud

Explore the words cloud of the MICROPATH project. It provides you a very rough idea of what is the project "MICROPATH" about.

influence    mps    spots    rates    predict    appropriately    abundant    validation    time    lowland    zones    ongoing    tool    predicting    transmission    accurately    hydrodynamic    powerful    risk    pathogens    deposit    remobilization    combined    critical    transient    substrate    heterogeneity       pathogenic    streams    dynamic    predictions    mu    diameter    sediments    urban    impacted    dependent    mathematical    accumulation    programs    model    mm    vector    ecosystems    pathogen    accumulate    stream    hot    microplastics    incorporating    synthesis    mp    public    immobilization    size    prevalent    spatial    worldwide    bacteria    separated    varied    quality    pioneer    tame    characterise    impair    streambed    fate    hydraulic    models    ecological    aquatic    freshwater    drivers    storage    pose    transport    microplastic    residence    persistence    disease    flow    river    provides    monitoring    birmingham    site    uk    headwater    health    fractions   

Project "MICROPATH" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 224˙933.00

Map

 Project objective

Microplastics (MPs), defined as between 1μm to 5 mm in diameter, are abundant within freshwater ecosystems and deposit and accumulate within stream transient storage areas, such as streambed sediments. Pathogenic bacteria use microplastics as a substrate, and therefore MPs can be used as a vector of disease transmission in streams. MPs can both impair the ecological quality of aquatic systems and pose a public health risk. Monitoring programs are often combined with mathematical models to assess risk for a wide range of flow conditions. A hydrodynamic model provides a powerful tool to identify high risk zones of MPs and pathogens in streams, such as hot spots of accumulation within sediments, and to predict the response to dynamic flow conditions. The overall goal of this proposal is to pioneer the development and field validation of a microplastic fate and transport model for predicting the persistence of microplastics and pathogens in streams worldwide, particularly lowland streams prevalent in the UK and Europe. The field study site is the Tame river, a headwater stream in Birmingham greatly impacted by urban influence. The project will assess three main objectives: 1) to accurately predict the fate and persistence of MPs in lowland streams by applying a hydrodynamic model that appropriately characterise their transport and varied residence time based on size, 2) to measure the spatial heterogeneity of MPs and pathogenic bacteria accumulation (separated by size fractions) in streambed sediments and important hydraulic drivers, and 3) improve predictions and fate of both MPs and pathogens by incorporating size-dependent immobilization and remobilization rates into the hydrodynamic model. The proposed project will advance a critical step for ongoing MP research by providing an advanced hydrodynamic model as a tool to improve predictions of MP and pathogen persistence in streams, and a synthesis study to advance knowledge on the fate of MPs in urban streams.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROPATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROPATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More