Opendata, web and dolomites

MICROPATH SIGNED

The fate and persistence of microplastics and associated pathogens in lowland rivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MICROPATH project word cloud

Explore the words cloud of the MICROPATH project. It provides you a very rough idea of what is the project "MICROPATH" about.

headwater    microplastic    size    transport    predicting    combined    influence    site    streams    ecological    mp    diameter    river    pose    appropriately    predict       impacted    bacteria    disease    flow    storage    predictions    transmission    spots    residence    fractions    pathogen    abundant    pathogenic    risk    vector    dependent    mps    powerful    deposit    prevalent    substrate    varied    zones    uk    mu    heterogeneity    public    freshwater    spatial    quality    tool    worldwide    critical    synthesis    accumulation    streambed    microplastics    validation    dynamic    impair    monitoring    stream    accurately    health    separated    urban    rates    ecosystems    birmingham    persistence    characterise    lowland    hydraulic    pathogens    transient    time    incorporating    ongoing    tame    provides    models    programs    mathematical    pioneer    sediments    model    aquatic    fate    hydrodynamic    remobilization    drivers    hot    mm    immobilization    accumulate   

Project "MICROPATH" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 224˙933.00

Map

 Project objective

Microplastics (MPs), defined as between 1μm to 5 mm in diameter, are abundant within freshwater ecosystems and deposit and accumulate within stream transient storage areas, such as streambed sediments. Pathogenic bacteria use microplastics as a substrate, and therefore MPs can be used as a vector of disease transmission in streams. MPs can both impair the ecological quality of aquatic systems and pose a public health risk. Monitoring programs are often combined with mathematical models to assess risk for a wide range of flow conditions. A hydrodynamic model provides a powerful tool to identify high risk zones of MPs and pathogens in streams, such as hot spots of accumulation within sediments, and to predict the response to dynamic flow conditions. The overall goal of this proposal is to pioneer the development and field validation of a microplastic fate and transport model for predicting the persistence of microplastics and pathogens in streams worldwide, particularly lowland streams prevalent in the UK and Europe. The field study site is the Tame river, a headwater stream in Birmingham greatly impacted by urban influence. The project will assess three main objectives: 1) to accurately predict the fate and persistence of MPs in lowland streams by applying a hydrodynamic model that appropriately characterise their transport and varied residence time based on size, 2) to measure the spatial heterogeneity of MPs and pathogenic bacteria accumulation (separated by size fractions) in streambed sediments and important hydraulic drivers, and 3) improve predictions and fate of both MPs and pathogens by incorporating size-dependent immobilization and remobilization rates into the hydrodynamic model. The proposed project will advance a critical step for ongoing MP research by providing an advanced hydrodynamic model as a tool to improve predictions of MP and pathogen persistence in streams, and a synthesis study to advance knowledge on the fate of MPs in urban streams.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROPATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROPATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More