Opendata, web and dolomites

NeuroMath SIGNED

Acquisition of Mathematical Concepts in the Human Brain

Total Cost €


EC-Contrib. €






Project "NeuroMath" data sheet

The following table provides information about the project.


Organization address
address: VIA CALEPINA 14
city: TRENTO
postcode: 38122

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 246˙844 €
 EC max contribution 246˙844 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2023-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI TRENTO IT (TRENTO) coordinator 246˙844.00


 Project objective

How do humans learn and manipulate mathematical concepts? In previous research, I have shown that (1) advanced mathematical reflection on concepts encoded for many years does not recruit the brain circuits for language; (2) non-verbal acquisition of geometrical rules call upon a language of thought that is independent of natural spoken language. However, the question remains to understand whether advanced mathematical acquisition in schools, where knowledge is taught verbally, also dispenses with the human ability for language. Building on the expertise I have acquired in functional MRI testing of math experts, with the help of my supervisors, the present project proposes to track the evolution of children and adults' brain activity during learning. To this end, we will expose participants to typical classroom lessons with math-related content. Using fMRI, coupled with traditional general linear model and original inter-subject correlation analyses, we particularly aim to investigate whether (1) similar learning neural mechanisms are at work in adulthood and childhood; (2) language plays a role in mathematical acquisition; (3) understanding dropout correlates with a specific neural marker. A first experiment will aim to identify brain activation that changes with learning of math versus general semantic concepts in adults. It will be conducted in Italy, under the supervision of Pr. Piazza who is a leading expert in the field of math cognition, and mainly uses fMRI to study the plastic changes occurring in the brain during learning in particular of symbols (words, numbers, and math symbols). A second experiment will probe whether the neural patterns observed during adult learning of math laws also apply to children's learning of math laws such as commutativity. It will be conducted in the US, under the supervision of Pr. Spelke who is renowned for her work on the infants’ development especially of math “core knowledge”.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMATH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROMATH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FrogsInSpace (2019)

From ecology to neurobiology: spatial cognition in rainforest frogs

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More  
lastchecktime (2022-05-23 2:41:35) correctly updated