Opendata, web and dolomites

RepDiff SIGNED

Revealing novel molecular mechanisms linking DNA replication and cell fate decisions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RepDiff project word cloud

Explore the words cloud of the RepDiff project. It provides you a very rough idea of what is the project "RepDiff" about.

dynamically    provides    reconfiguration    nascent    discovery    fate    fork    link    mechanistic    question    anja    cutting    decision    expert    organization    determined    edge    gap    join    expertise    layers    expression    replication    mass    genetic    transitions    either    specialized    window    significantly    proteins    accurately    inaccessible    sequence    silac    regulation    ncc    entails    body    pluripotent    share    undergo    hypothesize    cancer    sequential    epigenetic    functional    replicate    until    regulators    bind    dissect    cellular    tool    proteomics    groth    prof    otherwise    cells    all    predicted    post    stem    plasticity    opportunity    cell    quantitative    time    effect    transcription    profile    identity    copy    works    abnormal    normal    revealed    gene    disruption    reveal    lab    ahead    dna    reprogramming    affinity    spectrometry    replicating    purified    defines    preserve    hypothesis    mechanisms    restoration    chromatin   

Project "RepDiff" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 219˙312.00

Map

 Project objective

All cells in our body share the same genetic information. Cellular identity is determined by epigenetic mechanisms, which control gene expression. Replicating cells should accurately replicate their DNA sequence and copy their epigenetic profile to maintain their identity. DNA replication entails the disruption of the chromatin organization ahead of the replication fork and its restoration behind it. When cells change their identity in either normal development or abnormal processes as cancer, they undergo epigenetic reconfiguration, which defines their new identity. Recent works have revealed a time gap between DNA replication and epigenetic state restoration of many chromatin regulation layers. I hypothesize that the time until chromatin restoration post DNA replication provides a ‘window of opportunity’ for transcription factors and chromatin regulators to bind otherwise inaccessible areas and to facilitate chromatin reconfiguration and that pluripotent cells have specialized chromatin replication proteins, which preserve their high epigenetic plasticity. To test this hypothesis, I will join the lab of Prof. Anja Groth, a leading expert in the mechanisms controlling chromatin replication. Together with my expertise in stem cells and reprogramming, I will address this question with two sequential steps. I will use a cutting edge, quantitative proteomics method in which nascent DNA is affinity purified and its associated proteins are analyzed by mass-spectrometry (NCC-SILAC). I will use this discovery tool to define the proteins dynamically associated with nascent chromatin in pluripotent cells and cells that undergo cell fate transitions. I will then investigate proteins predicted to effect chromatin restoration/reconfiguration to dissect their functional role. This work has the potential to reveal a mechanistic link between DNA replication and cell fate decision and thus significantly contribute to the fields of development, stem cells, and cancer.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REPDIFF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REPDIFF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More