Opendata, web and dolomites

3DCanPredict SIGNED

Predicting clinical response to anticancer drugs using 3D-bioprinted tumor models for personalized therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DCanPredict project word cloud

Explore the words cloud of the 3DCanPredict project. It provides you a very rough idea of what is the project "3DCanPredict" about.

toxicity    offers    predictive    hence    powerful    treatment    biotech    grow    solely    form    metastasis    potentially    attractive    preclinical    animal    printed    cell    mimic    therapies    tools    cancer    anticancer    organ    power    save    hydrogels    limit    cultured    tissue    rapid    ct    tumor    societal    bioprinted    functional    clinical    personalized    origin    successful    progression    dishes    connected    structure    vessels    evaluation    significantly    flow    tumors    pump    constructed    suits    biophysics    predict    pharmaceutical    translational    reproducible    mechanical    2d    biopsy    library    reduce    platform    strategies    patient    generating    cells    heavily    mixed    critical    physio    screening    stromal    poc    responsiveness    basis    brain    invest    predicting    designed    decrease    pathological    create    serum    scans    co    types    companies    techniques    hurdle    standard    interactions    ecosystem    vascularized    microenvironment    models    model    adjacent    resemble    drug    mri    indicate    patients    scaffold    benefit    time    plastic    replacing    resembling    consist    3d    business    drugs   

Project "3DCanPredict" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 150˙000.00

Map

 Project objective

Predicting clinical response to novel and existing anticancer drugs remains a major hurdle for successful cancer treatment. Studies indicate that the tumor ecosystem, resembling an organ-like structure, can limit the predictive power of current therapies that were evaluated solely on tumor cells. The interactions of tumor cells with their adjacent microenvironment are required to promote tumor progression and metastasis, determining drug responsiveness. Such interactions do not form in standard research techniques, where cancer cells grow on 2D plastic dishes. Hence, there is a need to develop new cancer models that better mimic the physio-pathological conditions of tumors. Here, we create 3D-bioprinted tumor models based on a library of hydrogels we developed as scaffold for different tumor types, designed according to the mechanical properties of the tissue of origin. As PoC, we bioprinted a vascularized 3D brain tumor model from brain tumor cells co-cultured with stromal cells and mixed with our hydrogels, that resemble the biophysics of the tumor and its microenvironment. Our patient-derived models consist of cells from a biopsy, constructed according to CT/MRI scans, and include functional vessels allowing for patients' serum to flow when connected to a pump. These models will facilitate reproducible, reliable and rapid results, determining which treatment suits best the specific patient's tumor. Taken together, this 3D-printed model could be the basis for potentially replacing cell and animal models. We predict that this powerful platform will be used in translational research for preclinical evaluation of new therapies and for clinical drug screening, which will save critical time, reduce toxicity and significantly decrease costs generating a major societal benefit. Our platform offers a highly attractive business case, as pharmaceutical and biotech companies heavily invest in preclinical predictive tools for novel personalized drug screening strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DCANPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DCANPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

THERMONANO (2018)

Nanoassemblies for the subcutaneous self-administration of anticancer drugs

Read More  

EXTREME (2020)

The Epistemology and Ethics of Fundamentalism

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More