Opendata, web and dolomites

3DCanPredict SIGNED

Predicting clinical response to anticancer drugs using 3D-bioprinted tumor models for personalized therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DCanPredict project word cloud

Explore the words cloud of the 3DCanPredict project. It provides you a very rough idea of what is the project "3DCanPredict" about.

biophysics    drugs    invest    save    library    suits    printed    replacing    tumor    model    basis    cultured    bioprinted    physio    patient    scans    form    time    scaffold    standard    heavily    patients    microenvironment    reproducible    cell    hydrogels    generating    successful    animal    vessels    organ    co    evaluation    biopsy    preclinical    treatment    critical    pathological    tools    decrease    potentially    responsiveness    rapid    power    powerful    tumors    predictive    indicate    mimic    plastic    predicting    business    screening    significantly    drug    anticancer    limit    techniques    structure    flow    ct    benefit    reduce    2d    interactions    models    types    grow    biotech    origin    personalized    predict    ecosystem    serum    companies    progression    pharmaceutical    adjacent    cells    offers    societal    designed    consist    cancer    toxicity    clinical    strategies    dishes    3d    mixed    brain    metastasis    therapies    vascularized    pump    stromal    resemble    functional    mechanical    attractive    mri    constructed    hence    connected    platform    tissue    create    poc    resembling    hurdle    solely    translational   

Project "3DCanPredict" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 150˙000.00

Map

 Project objective

Predicting clinical response to novel and existing anticancer drugs remains a major hurdle for successful cancer treatment. Studies indicate that the tumor ecosystem, resembling an organ-like structure, can limit the predictive power of current therapies that were evaluated solely on tumor cells. The interactions of tumor cells with their adjacent microenvironment are required to promote tumor progression and metastasis, determining drug responsiveness. Such interactions do not form in standard research techniques, where cancer cells grow on 2D plastic dishes. Hence, there is a need to develop new cancer models that better mimic the physio-pathological conditions of tumors. Here, we create 3D-bioprinted tumor models based on a library of hydrogels we developed as scaffold for different tumor types, designed according to the mechanical properties of the tissue of origin. As PoC, we bioprinted a vascularized 3D brain tumor model from brain tumor cells co-cultured with stromal cells and mixed with our hydrogels, that resemble the biophysics of the tumor and its microenvironment. Our patient-derived models consist of cells from a biopsy, constructed according to CT/MRI scans, and include functional vessels allowing for patients' serum to flow when connected to a pump. These models will facilitate reproducible, reliable and rapid results, determining which treatment suits best the specific patient's tumor. Taken together, this 3D-printed model could be the basis for potentially replacing cell and animal models. We predict that this powerful platform will be used in translational research for preclinical evaluation of new therapies and for clinical drug screening, which will save critical time, reduce toxicity and significantly decrease costs generating a major societal benefit. Our platform offers a highly attractive business case, as pharmaceutical and biotech companies heavily invest in preclinical predictive tools for novel personalized drug screening strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DCANPREDICT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DCANPREDICT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More