Opendata, web and dolomites

Windrone Zenith SIGNED

Autonomous & Intelligent UAV-based Wind Turbine Inspection System for Cost-effective, Reliable, Safe and Actionable Blade Fault Detection and Prediction

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Windrone Zenith project word cloud

Explore the words cloud of the Windrone Zenith project. It provides you a very rough idea of what is the project "Windrone Zenith" about.

algorithms    defects    experts    hazardous    drone    customers    leaves    largely    image    inefficient    customer    solution    breakthrough    aerial    poor    hours    majority    database    ground    manually    automated    50    inspection    uavs    pictures    accurate    time    wind    blades    software    zenith    collisions    attributed    hardware    downtime    fault    blade    cloud    levelised    images    qualified    undetected    inspect    inspectors    relies    fly    total    capturing    closer    roping    pro    lifetime    inspecting    backlight    provides    review    bladeinsight    single    operation    reports    turbine    saving    uav    generate    autonomously    detection    flight    machine    unmanned    reporting    platform    captured    quality    outdated    direct    smart    winddrone    6x    actionable    coupled    faults    1500    maintenance    vehicles    equipped    decreases    25    detect    expensive    flaws    cameras    learning    automatically    inspected    consuming    manual   

Project "Windrone Zenith" data sheet

The following table provides information about the project.

Coordinator
PRO-DRONE, SA 

Organization address
address: SINES TECNOPOLO Z.I.L. II, 122-A
city: SINES
postcode: 7520-309
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙956˙416 €
 EC max contribution 1˙339˙396 € (68%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-2
 Funding Scheme SME-2
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    PRO-DRONE, SA PT (SINES) coordinator 1˙339˙396.00

Map

 Project objective

'Over the lifetime of a wind turbine, operation and maintenance costs represent 25% of total levelised cost per kWh produced. The majority of these costs are attributed to the wind turbine’s blades, yet current methods of inspecting these blades are outdated and inefficient. Blade inspection procedures still largely relies on qualified inspectors roping down each blade to manually inspect for any flaws or defects present on the blade. This is clearly a very hazardous, time-consuming (5 hours), and expensive method (€1500). Other less used methods of blade inspection include capturing blade images from ground cameras and manual review by experts. However, poor image quality and strong backlight leaves many blade flaws undetected. Unmanned Aerial Vehicles (UAVs) are now being used to take pictures of the blades from much closer up. Current UAV's however require dedicated experts for both flight control as well as image processing, analysis, and fault detection. Pro-Drone's integrated WindDrone Zenith’s solution is a breakthrough solution providing enabling 3-blade inspection in a single flight. Our technology solution is fully equipped with highly accurate inspection equipment hardware coupled with smart software. The software allows the UAV to be fly autonomously, avoid collisions, automatically detect any faults, and generate reports for the customer on each wind turbine inspected. Machine learning algorithms are used to continuously improve automated fault detection based on a growing database of captured images and their analysis. Our 'BladeInsight' cloud reporting platform makes actionable reports available to our customers as part of this solution. Pro-Drone Zenith provides for a 50% direct cost saving, and decreases turbine inspection downtime by 6X, as compared to existing methods.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WINDRONE ZENITH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WINDRONE ZENITH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

MindTrack (2019)

Analysis of eye vergence responses for the early detection and monitoring of cognitive and mental disorders

Read More  

Magnesys (2019)

Efficient filtering of metallic impurities in food processing

Read More  

LIVELMIA (2019)

Innovative assay for microRNAs analysis

Read More