Opendata, web and dolomites

GLISS SIGNED

Gliding epitaxy for inorganic space-power sheets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLISS project word cloud

Explore the words cloud of the GLISS project. It provides you a very rough idea of what is the project "GLISS" about.

ultra    decreased    technologies    heavy    drive    generation    sustainable    scalable    exhibits    rebalance    film    panels    innovation    interface    limited    engineering    demonstrated    films    tolerance    carriers    surface    efficient    global    structures    geometry    removing    fabrication    damage    substrates    photovoltaic    extraction    provides    unlimited    nm    pristine    release    designed    mechanical    rates    protective    services    operation    nucleates    wafer    carrier    glide    satellite    multijunction    universal    economically    underlying    restrictions    bonding    architecture    flexible    structure    energy    fundamental    launch    layer    expensive    form    interaction    thin    epitaxial    crystal    suggesting    reuse    selective    translational    equilibrium    hot    2d    monolayers    ranging    pv    intrinsic    radiation    realizing    device    afforded    deposited    power    registry    accelerate    steady    electronic    provision    prevent    current    efficiency    prospect    rigid    lt    nanophotonic    grown    lightweight    coverglass    modern    substrate    free    epitaxially    despite    enhancement    thick   

Project "GLISS" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙797˙789 €
 EC max contribution 1˙797˙789 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙797˙789.00

Map

 Project objective

Current satellite technologies are limited by the photovoltaic (PV) panels they require for power generation. Despite steady advances in efficiency afforded by modern III-V multijunction PV, these large, rigid panels are expensive to produce and launch due to their heavy on-wafer architecture and thick protective coverglass, which is necessary to prevent radiation damage. I will develop and demonstrate ultra-thin (<100 nm) III-V PV, for highly efficient, lightweight, and flexible satellite PV provision. Decreased costs will help accelerate universal availability of satellite services, essential for sustainable global development, and removing PV form factor restrictions will drive innovation in satellite design.

Realizing this goal will require a translational program of research, ranging from fundamental design parameters to scalable fabrication methodologies. I recently demonstrated that the ultra-thin form factor exhibits intrinsic radiation tolerance, suggesting the prospect of a coverglass free, flexible system. I will target high efficiency in this geometry by engineering the device architecture to rebalance carrier interaction rates to support generation of non-equilibrium hot-carriers through the use of nanophotonic structures for strong E-field enhancement. The electronic structure will be designed for energy selective hot-carrier extraction, allowing highly efficient operation. Scalable fabrication will be achieved via development of a novel crystal growth method, in which III-V films are grown epitaxially on 2D monolayers. The 2D interface will prevent strong bonding between the deposited layer and an underlying growth substrate, which provides registry information to the crystal as it nucleates. The epitaxial layer will be free to glide across the growth surface during film formation, allowing the mechanical release of pristine films and the unlimited reuse of the growth substrates, enabling scalable, economically viable production of this new device.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLISS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLISS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DEADSEA_ECO (2019)

Modelling Anthropocene Trophic Cascades of the Judean Desert Ecosystem: A Hidden Dimension in the History of Human-Environment Interactions

Read More  

fastNMR (2019)

Fast, Flexible, and Convenient: a simple insert system for the in situ NMR analysis of very fast reactions on a modern open-access FT NMR spectrometer

Read More  

NonlinearTopo (2019)

Nonlinear Optical and Electrical Phenomena in Topological Semimetals

Read More