Opendata, web and dolomites

Reexen SIGNED

Ultra-low cost & ultra-high efficiency AI processor for enabling fast and cost-effective deployment of edge-computing applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Reexen project word cloud

Explore the words cloud of the Reexen project. It provides you a very rough idea of what is the project "Reexen" about.

network    industry    talent    conversions    tops    storage    international    health    executing    attract    chip    obtains    robotics    finance    capacity    transversal    algorithms    aligns    efficient    contexts    semiconductor    battery    reexen    additional    recognition    prototyping    cloud    requiring    sensors    image    highest    area    dnn    smart    audio    consumption    achieves    fast    latency    distance    extremely    edge    processor    superior    solution    complexity    size    limited    context    signal    reducing    technologies    nucleus    successful    time    memory    100    gaming    suitable    company    mixed    business    mobile    dnns    efficiency    power    job    deep    computational    processors    circuits    ultra    breakthrough    data    accuracy    maximum    myriad    neural    ai    generation    energy    incurring    suboptimal    designed    eliminating    completely    throughput    10ms    services    ones    core    fabrication    supporting    appears    exploded    communication    speech    running    minimum    lt    networks    financing   

Project "Reexen" data sheet

The following table provides information about the project.

Coordinator
CYBERTRON TECH GMBH 

Organization address
address: LIMMATQUAI 106
city: ZURICH
postcode: 8001
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CYBERTRON TECH GMBH CH (ZURICH) coordinator 50˙000.00

Map

 Project objective

'Since the breakthrough application of Deep Neural Networks algorithms (DNNs) to speech and image recognition, the number of applications that use DNNs has exploded, achieving the highest accuracy in a myriad of contexts (health, robotics, finance, gaming, etc.). However, their superior accuracy comes at the cost of high computational complexity. Current approaches to solve this challenge are cloud-based, incurring in high power consumption and high latency, given their communication needs. Although cloud approaches are suitable for some context, they are suboptimal for real-time applications running on embedded or mobile devices (with limited battery capacity and requiring fast responses). REEXEN appears to bring a solution to this challenge: an extremely efficient AI processor (a semiconductor chip) specifically designed for supporting DNN-based edge applications. By exploiting state-of-the-art semiconductor technologies in mixed-signal circuits and in-memory processing, REEXEN obtains the best power-efficiency when executing DNN algorithms, in terms of maximum throughput per energy unit consumption (30 TOPs/W). By reducing the 'distance' between data generation (sensors), data storage (memory) and data processing (core processor or nucleus), and by eliminating A/D conversions, REEXEN also achieves minimum latency (<10ms) and fabrication area, thus also reducing the overall cost of production. REEXEN completely aligns with the EU approach to AI, as an enabling technology that will allow the development of current industry-transversal smart services and the implementation of future new ones. Our company is 100% focused on developing next generation of ultra-low power neural network processors. From the successful results of our early prototyping for audio applications, REEXEN project will attract the best talent and additional financing to build the business around our technology and increase our company size, international presence and job generation.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REEXEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REEXEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More  

LiCrete (2018)

LiCrete - Light transmitting composite material for building purposes

Read More