Opendata, web and dolomites

Reexen SIGNED

Ultra-low cost & ultra-high efficiency AI processor for enabling fast and cost-effective deployment of edge-computing applications

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Reexen project word cloud

Explore the words cloud of the Reexen project. It provides you a very rough idea of what is the project "Reexen" about.

highest    gaming    business    speech    prototyping    algorithms    ultra    suitable    finance    sensors    image    fabrication    tops    memory    battery    dnn    breakthrough    100    exploded    computational    solution    time    attract    context    throughput    eliminating    network    appears    superior    minimum    obtains    reducing    health    company    size    latency    fast    mobile    circuits    services    designed    extremely    area    processor    dnns    reexen    capacity    communication    successful    recognition    accuracy    edge    requiring    limited    distance    generation    smart    10ms    contexts    completely    transversal    industry    deep    nucleus    chip    cloud    consumption    achieves    financing    energy    robotics    semiconductor    running    job    audio    signal    efficient    myriad    mixed    networks    technologies    lt    processors    efficiency    conversions    neural    ones    incurring    complexity    storage    data    executing    maximum    power    supporting    ai    talent    core    suboptimal    international    additional    aligns   

Project "Reexen" data sheet

The following table provides information about the project.

Coordinator
CYBERTRON TECH GMBH 

Organization address
address: LIMMATQUAI 106
city: ZURICH
postcode: 8001
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CYBERTRON TECH GMBH CH (ZURICH) coordinator 50˙000.00

Map

 Project objective

'Since the breakthrough application of Deep Neural Networks algorithms (DNNs) to speech and image recognition, the number of applications that use DNNs has exploded, achieving the highest accuracy in a myriad of contexts (health, robotics, finance, gaming, etc.). However, their superior accuracy comes at the cost of high computational complexity. Current approaches to solve this challenge are cloud-based, incurring in high power consumption and high latency, given their communication needs. Although cloud approaches are suitable for some context, they are suboptimal for real-time applications running on embedded or mobile devices (with limited battery capacity and requiring fast responses). REEXEN appears to bring a solution to this challenge: an extremely efficient AI processor (a semiconductor chip) specifically designed for supporting DNN-based edge applications. By exploiting state-of-the-art semiconductor technologies in mixed-signal circuits and in-memory processing, REEXEN obtains the best power-efficiency when executing DNN algorithms, in terms of maximum throughput per energy unit consumption (30 TOPs/W). By reducing the 'distance' between data generation (sensors), data storage (memory) and data processing (core processor or nucleus), and by eliminating A/D conversions, REEXEN also achieves minimum latency (<10ms) and fabrication area, thus also reducing the overall cost of production. REEXEN completely aligns with the EU approach to AI, as an enabling technology that will allow the development of current industry-transversal smart services and the implementation of future new ones. Our company is 100% focused on developing next generation of ultra-low power neural network processors. From the successful results of our early prototyping for audio applications, REEXEN project will attract the best talent and additional financing to build the business around our technology and increase our company size, international presence and job generation.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REEXEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REEXEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

Keelcrab (2019)

Keelcrab the Drone for an automated hull cleaning: fast & essential

Read More  

Totem Spoon (2019)

Interactive Digital Signage with emotional intelligence for smart cities

Read More