Opendata, web and dolomites

SILENT SIGNED

Silent mutations in cancer

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SILENT project word cloud

Explore the words cloud of the SILENT project. It provides you a very rough idea of what is the project "SILENT" about.

sequence    regulate    despite    ignored    genetic    samples    400    translated    bioinformatics    largely    rank    innocent    predicted    lab    protein    special    modes    mrna    voice    mrnas    wet    community    gene    11    defects    pathogenic    genes    discover    landscape    previously    fact    think    alter    driver    explored    pathogenesis    shown    mechanisms    mutated    implications    encode    cellular    behavior    transcribed    capacity    cancer    people    cell    statistics    contains    experimental    delineate    underestimated    translation    mutations    tumor    perform    first    turn    visible    functions    thousands    methodology    regulation    efficiency    characterization    meaningless    difficult    public    give    coding    analysed    exert    expertise    transcription    dysregulation    couple    expression    synonymous    acid    website    proteins    genome    systematically    decade    silent    filter    poorly    silico    amino    purpose    assumed    our    hypothesized    events    happens    data    broad   

Project "SILENT" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 1˙999˙977 €
 EC max contribution 1˙999˙977 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 1˙999˙977.00

Map

 Project objective

Our genome contains 20 000 genes, which are transcribed into mRNAs. These mRNAs are then in turn translated into proteins that exert the cellular functions. In the past decade, researchers have analysed the genetic sequence of all protein coding genes in thousands of tumor samples, with the aim to identify gene defects (‘mutations’) that cause cancer. In most of these studies, only gene mutations that cause amino acid changes in the proteins for which they encode were analysed, and it was assumed that mutations that do not cause amino acid changes (=synonymous or silent mutations) are innocent and meaningless events in cancer pathogenesis. Despite the fact that synonymous mutations have thus largely been ignored by cancer researchers, there are a couple of synonymous mutations that have been shown to promote cancer. This happens via highly novel and poorly understood mechanisms of gene expression dysregulation that occur at the level of gene transcription to mRNA or at the level of translation of the mRNA into protein. Since the role of synonymous mutations in cancer has not been systematically explored so far, and since there is thus evidence that these mutations are not as ‘silent’ and innocent as many people think, we hypothesized that the pathogenic role of synonymous mutations in cancer is largely underestimated. First, we will delineate the landscape of synonymous driver mutations in cancer. For this purpose, we will develop bioinformatics and statistics approaches to identify relevant synonymous mutations in previously generated sequence data from 11 400 tumor samples. Furthermore, we will apply in silico methods to rank identified mutations and filter out the mutations that are predicted to most efficiently promoting cancer. For 50 of the mutations that are predicted to be pathogenic, we will perform wet lab experimental testing of their capacity to alter gene expression level and to promote cancer cell behavior. Special attention will go to mutations that affect poorly characterized mechanisms to regulate the efficiency of protein translation of the mutated gene, because our lab has a strong expertise in this field. Results from this project may also be relevant for more classical non-synonymous mutations, because the novel modes of gene expression regulation we will discover might also be relevant for such mutations, and the project may thus have broad very implications in the cancer field. Synonymous mutations are currently difficult to find for researchers. We will make these mutations visible via a public website and we will make the methodology we develop in this project available to the research community. This project will thus give silent synonymous mutations a voice through their first comprehensive characterization in cancer.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SILENT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SILENT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

EVOMENS (2020)

The evolution of menstruation in primates

Read More