Opendata, web and dolomites

STEMMS SIGNED

Storage and Eruption of Mushy Magma Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STEMMS project word cloud

Explore the words cloud of the STEMMS project. It provides you a very rough idea of what is the project "STEMMS" about.

events    stored    grand    natural    saturation    heat    crystal    subsequently    life    assembled    earth    rare    melt    mechanisms    community    devastating    precursory    micro    materials    determines    released    external    later    primary    mushy    financial    mobilisation    timing    source    move    tens    grain    crystals    living    stemms    eruptive    100km    structure    people    interrogate    erupt    macro    dense    explosive    mobilised    transformative    bubbles    storage    health    eruption    movements    eruptions    signs    erupted    crystallisation    poor    globally    unrest    critically    chain    questions    too    trigger    link    magma    volcano    volcanology    frame    practices    active    thousands    mixture    hazard    controls    800m    volcanic    below    stiff    accumulated    prior    volumes    readiness    subsequent    brings    geophysical    framework    recognising    ultimately    crust    introduces    observations    causing    remobilised    gas    forecasting    critical    volatile    surface    paradigm    textures    physical    fundamental    mush    stability    fatalities    history    simply    gt    eruptible   

Project "STEMMS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF DURHAM 

Organization address
address: STOCKTON ROAD THE PALATINE CENTRE
city: DURHAM
postcode: DH1 3LE
website: www.dur.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙968˙006 €
 EC max contribution 1˙968˙006 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF DURHAM UK (DURHAM) coordinator 1˙968˙006.00

Map

 Project objective

Volcanic eruptions are a major natural hazard, affecting life, health and financial stability globally, with >800m people living within 100km of an active volcano. Large explosive eruptions can be devastating, causing tens of thousands of fatalities. Forecasting eruptive activity is the ‘grand challenge’ of volcanology, but large eruptions are rare, so our ability to link geophysical observations of surface unrest to magma movements below the surface remains poor. There are two key questions: (1) how are large volumes of magma accumulated within the Earth’s crust? and (2) how are they subsequently mobilised for eruption? Magma is stored as crystal mush (a dense mixture of volcanic crystals and melt), that is too stiff to move and erupt. Understanding what controls its structure, and the mechanisms by which the mush can be released as eruptible magma, is therefore critical to identifying precursory signs of volcanic unrest. STEMMS introduces a transformative approach to the problem of magma storage and mobilisation prior to large volcanic eruptions, recognising that the micro-scale structure of a mush is fundamental to its subsequent macro-scale physical behaviour. The project brings together two new concepts: (1) The primary growth conditions of a mush control its grain-scale textures – there is a critical link between magma crystallisation history and its subsequent physical behaviour. (2) A mush can be remobilised simply by growth of gas bubbles, with no external source of heat or eruption trigger – the timing of volatile saturation is key. Thus, the way a mush is assembled critically determines its readiness to be erupted later. Together, these concepts will frame a new paradigm to define how mushy materials are mobilised before large volcanic eruptions. STEMMS will develop a new framework to interrogate the chain of events prior to large eruptions, which will change practices in the volcanology community and, ultimately, lead to improved eruption forecasting.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STEMMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STEMMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More