Opendata, web and dolomites

OXYGEN SIGNED

The redox evolution of arc magmas: from the oxygenation of the Earth’s atmosphere to the genesis of giant hydrothermal ore deposits

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OXYGEN project word cloud

Explore the words cloud of the OXYGEN project. It provides you a very rough idea of what is the project "OXYGEN" about.

spheres    generation    isotope    origin    giant    types    speciation    budget    regions    will    first    fluids    re    melt    degassing    lower    oxidation    ore    arc    evolution    significantly    magma    instrumentation    oxygenation    analytical    cell    pt    pressure    inclusions    ratios    crustal    temperatures    capability    situ    apparatus    temperature    employ    upper    prospective    hydrothermal    magmatism    computational    aqueous    magmatic    powerful    mass    similarly    differentiation    despite    spectroscopic    reactions    simulations    time    redox    combine    quantified    prototype    critical    rely    pinpoint    au    minerals    deposits    voluminous    sulfur    pressures    agents    responsible    combination    silicate    concentrations    revolutionary    earth    genesis    precision    place    atmosphere    magmas    chemical    debated    experimentally    unparalleled    subduction    subsequently    experiments    quantitative    petrology    oxidized    volatile    pd    zones    questions    transfer    obtain    significance    potentially    oxygen   

Project "OXYGEN" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙406˙972 €
 EC max contribution 2˙406˙972 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2025-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 2˙406˙972.00

Map

 Project objective

Arc magmatism at subduction zones is responsible for much of the mass transfer of chemical elements between the Earth’s lower and upper spheres. Arc magmas are significantly more oxidized and richer in volatile elements than other voluminous magma types on Earth. These characteristics promote the genesis of large magmatic-hydrothermal ore deposits and potentially also the build-up of the oxygen budget of the Earth’s atmosphere. Despite its great significance, the origin of the higher oxidation state of arc magmas is still one of the most debated questions in petrology. I will combine high-pressure-temperature experiments, field-based studies and computational simulations to obtain quantitative understanding of redox reactions taking place during magma genesis, differentiation and degassing. Subsequently, I will apply this new knowledge to assess if arc magmatism may have been a key to the oxygenation of the Earth’s atmosphere, and to pinpoint the most prospective regions for the generation of giant ore deposits. Most experiments will rely on revolutionary new instrumentation and methodologies, which I have recently developed or will develop as a part of the project. For example, we will determine for the first time the speciation of sulfur in aqueous fluids in situ at magmatic temperatures and upper crustal pressures by using a prototype spectroscopic cell, so that its critical role in redox transfer and ore genesis can be quantified. Similarly, the field-based studies will employ a new method to constrain the redox evolution of magmas with unparalleled precision, which will be developed experimentally by using a prototype high-pressure apparatus with a unique capability to control redox conditions. In addition, these will also apply a powerful combination of novel and challenging analytical methods including the analysis of Au, Pt, Pd and Re concentrations and S isotope ratios in silicate melt inclusions in minerals to identify the key agents of magma oxidation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OXYGEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OXYGEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

AST (2019)

Automatic System Testing

Read More