Opendata, web and dolomites


Dead or Alive: Finding the Origin of Caldera Unrest using Magma Reservoir Models

Total Cost €


EC-Contrib. €






 DEFORM project word cloud

Explore the words cloud of the DEFORM project. It provides you a very rough idea of what is the project "DEFORM" about.

physics    episodic    unlikely    observations    varying    models    alter    local    crystallizing    severe    computationally    chile    elevated    pronounced    series    proportions    eruptions    laguna    noxious    eruption    brittle    dynamics    pyroclastic    evolution    migrate    deformation    unrest    simulation    difficult    cooling    erupt    maule    transport    global    efficient    implied    caldera    calderas    volatiles    explosively    leveraging    dimensional    ground    thought    ejected    crustal    impacts    model    volume    seismicity    liquids    ductile    thermo    release    indicate    gap    form    hazard    understand    forming    reservoir    gas    destructive    del    time    quantities    reactive    mechanical    currents    magmatic    emissions    sudden    vast    deadly    injection    simulate    volcanic    phases    compare    punctuated    bridge    expand    explosive    density    coupled    frameworks    valley    solids    magma    undergoing    trigger    uplift    gases    climate    continuum    lahars    ascertain   

Project "DEFORM" data sheet

The following table provides information about the project.


Organization address
postcode: G12 8QQ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 212˙933.00


 Project objective

Caldera-forming volcanic eruptions can have severe impacts from the local to global scale. As vast quantities of magma are ejected during the eruption, they can trigger deadly pyroclastic density currents and lahars, release noxious gases and even alter global climate. At many calderas, episodic unrest in the form of pronounced uplift, increased seismicity and elevated gas emissions raise concern over the potential for such destructive eruptions. However, it remains difficult to ascertain whether the unrest observations indicate (1) an injection of new magma into the crustal reservoir, which could increase its potential for explosive eruptions, or (2) a sudden release of magmatic volatiles from a cooling and crystallizing reservoir, which would remain unlikely to erupt explosively. In this proposed project, I will develop a physics-based model of a magma reservoir to determine the processes involved in magma injection and evolution that may lead to episodic unrest. Of particular interest is how gases migrate through the system and alter reservoir volume. The model will simulate the thermo-mechanical evolution of a two-dimensional, three-phase (solids, liquids, gas) magma reservoir. By leveraging emerging continuum frameworks for reactive transport modelling, this work will expand existing two-dimensional models to simulate three phases in varying proportions in a computationally efficient approach. The reservoir model will be coupled to ductile-to-brittle crustal deformation to understand the conditions that lead to episodic unrest. I will compare simulation results with time series observations of ground deformation and gas emissions from Laguna del Maule in Chile, thought to be undergoing magma injection, and Long Valley in the US, thought to have experienced punctuated gas release. Results will bridge the gap among current models of three-phase magma dynamics and will improve understanding of the eruption hazard implied by caldera unrest.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEFORM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEFORM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

IPG_CORE (2019)

Looking for the Impersonal Core -- Impersonal Pronouns across Germanic languages

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More