Opendata, web and dolomites


Fractionalized quantum matter: Characterization, realization and generalization

Total Cost €


EC-Contrib. €






 Fractional project word cloud

Explore the words cloud of the Fractional project. It provides you a very rough idea of what is the project "Fractional" about.

tolerant    first    familiar    magnetic    scientific    symmetry    metals    experimentally    details    nature    external    carry    dynamical    quantum    latter    landmark    hallmark    weyl    mathematical    exact    milestone    orders    door    topological    intriguing    dispose    ferro    trivial    impurities    fractionalization    of    insensitive    diagonalization    fci    analogues    proposals    computation    route    fqhe    correlations    potentially    with    signatures    severely    competing    realize    breaking    interacting    realizations    leap    search    insulators    assessing    efficient    generalize    numerical    protected    delicate    realized    computing    topologically    semi    revolution    groundbreaking    concerning    fractional    temperatures    local    largely    innovative    classified    advent    constraining    proposes    effect    lastly    emergence    tools    unexplored    parent    magnets    constituents    topology    theories    unlike    dimensional    interplay    exotic    hall    borrowed    jeopardize    critically    chern    interedisciplinary    phases    fault    excitations    fractionalized   

Project "Fractional" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website
 Total cost 215˙699 €
 EC max contribution 215˙699 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2015
 Duration (year-month-day) from 2015-11-02   to  2018-11-01


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

With the advent of topological phases, we have recently witnessed a revolution in our understanding of different phases of matter. They are described by tools borrowed from mathematical topology, unlike more familiar phases such as (ferro)magnets, classified in terms of symmetry breaking. Within these topological phases, fractionalized states of matter are of the most exotic, intriguing and potentially useful kind. They result from the delicate interplay between strong correlations among its constituents and the topological nature of the parent non-interacting state. They carry fractional quantum numbers and topologically protected excitations, insensitive to local system details (e.g. impurities) and key to efficient, fault-tolerant quantum computation. The fractional quantum Hall effect (FQHE) is still the hallmark of such phases but it needs strong magnetic fields and low temperatures to be realized, severely constraining the latter groundbreaking scientific leap. Thus, this project aims to reach a new milestone concerning fractionalized phases to foster possible realizations and open the next door towards the quantum computing revolution. To this end, an innovative interedisciplinary approach is required. First, a numerical study beyond the widely used exact diagonalization will characterize fractional Chern insulators (FCI), FQHE analogues that dispose of the need of external magnetic fields, strongly focusing on experimentally relevant features, in particular dynamical signatures, still largely unexplored. Second, it proposes a new ’topologically trivial to FCI’ route to realize these phases while critically assessing existing proposals and the role of possible competing orders that can jeopardize the emergence of fractionalization. Lastly, it will investigate effective quantum field theories that can generalize fractionalization to three dimensional topological phases in interacting Weyl semi-metals, providing an new landmark in the search for these states.


year authors and title journal last update
List of publications.
2018 Xiao-Yu Dong, Adolfo G. Grushin, Johannes Motruk, Frank Pollmann
Charge Excitation Dynamics in Bosonic Fractional Chern Insulators
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.121.086401
Physical Review Letters 121/8 2020-03-03
2018 Shreyas Patankar, Liang Wu, Baozhu Lu, Manita Rai, Jason D. Tran, T. Morimoto, Daniel E. Parker, Adolfo G. Grushin, N. L. Nair, J. G. Analytis, J. E. Moore, J. Orenstein, D. H. Torchinsky
Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.165113
Physical Review B 98/16 2020-03-03
2018 Felix Flicker, Fernando de Juan, Barry Bradlyn, Takahiro Morimoto, Maia G. Vergniory, Adolfo G. Grushin
Chiral optical response of multifold fermions
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.155145
Physical Review B 98/15 2020-03-03
2016 Sthitadhi Roy, Michael Kolodrubetz, Joel E. Moore, Adolfo G. Grushin
Chern numbers and chiral anomalies in Weyl butterflies
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.94.161107
Physical Review B 94/16 2020-03-03
2017 Johannes Gooth, Anna C. Niemann, Tobias Meng, Adolfo G. Grushin, Karl Landsteiner, Bernd Gotsmann, Fabian Menges, Marcus Schmidt, Chandra Shekhar, Vicky Süß, Ruben Hühne, Bernd Rellinghaus, Claudia Felser, Binghai Yan, Kornelius Nielsch
Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP
published pages: 324-327, ISSN: 0028-0836, DOI: 10.1038/nature23005
Nature 547/7663 2020-03-03
2016 Adolfo G. Grushin, Jörn W. F. Venderbos, Ashvin Vishwanath, Roni Ilan
Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels
published pages: , ISSN: 2160-3308, DOI: 10.1103/PhysRevX.6.041046
Physical Review X 6/4 2020-03-03
2016 Tobias Meng, Adolfo G. Grushin, Kirill Shtengel, Jens H. Bardarson
Theory of a 3+1D fractional chiral metal: Interacting variant of the Weyl semimetal
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.94.155136
Physical Review B 94/15 2020-03-03
2017 Fernando de Juan, Adolfo G. Grushin, Takahiro Morimoto, Joel E Moore
Quantized circular photogalvanic effect in Weyl semimetals
published pages: 15995, ISSN: 2041-1723, DOI: 10.1038/ncomms15995
Nature Communications 8 2020-03-03
2017 Jan Behrends, Jun-Won Rhim, Shang Liu, Adolfo G. Grushin, Jens H. Bardarson
Nodal-line semimetals from Weyl superlattices
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.96.245101
Physical Review B 96/24 2020-03-03
2016 Dániel Varjas, Adolfo G. Grushin, Roni Ilan, Joel E. Moore
Dynamical Piezoelectric and Magnetopiezoelectric Effects in Polar Metals from Berry Phases and Orbital Moments
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.117.257601
Physical Review Letters 117/25 2020-03-03
2017 Duc Thanh Tran, Alexandre Dauphin, Adolfo G. Grushin, Peter Zoller, Nathan Goldman
Probing topology by “heating”: Quantized circular dichroism in ultracold atoms
published pages: e1701207, ISSN: 2375-2548, DOI: 10.1126/sciadv.1701207
Science Advances 3/8 2020-03-03

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRACTIONAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRACTIONAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More