Opendata, web and dolomites

PREF LEARNHEUR

Learning heuristics in preference elicitation tasks: insights from behavioural, computational and neurobiological investigations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PREF LEARNHEUR project word cloud

Explore the words cloud of the PREF LEARNHEUR project. It provides you a very rough idea of what is the project "PREF LEARNHEUR" about.

behaviors    economic    psychology    human    policies    contribution    incorporate    isolation    mechanisms    elicitation    talks    accounted    manner    options    fruitful    economics    model    social    people    reveal    maximize    predictable    preference    compare    thereby    cornerstones    preferences    trigger    conceptual    succession    instantiations    behavior    train    seems    neurocognitive    coherent    cross    underlying    guide    understand    additional    refer    models    heuristic    perform    brain    neuroscience    although    fast    heuristics    cognitive    public    neuro    assumes    neurobiological    patterns    micro    sequence    normal    experiments    vary    captures    scientific    variance    emergence    theory    imaging    functional    agents    suggests    neuroscientist    trials    learned    select    pathological    sciences    highest    unravel    combining    decision    society    dynamical    individuals    scholars    behavioral    refine    faced    option    host    adaptive    choices    tackle    pioneering    macroeconomic    computational    influence    individual    attribute    subsequent    framework    quantitative    tools   

Project "PREF LEARNHEUR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT VAN AMSTERDAM 

Organization address
address: SPUI 21
city: AMSTERDAM
postcode: 1012WX
website: www.uva.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://sites.google.com/site/maellebreton/home
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM NL (AMSTERDAM) coordinator 165˙598.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Although decision theory assumes that when making a choice, individuals attribute values to available options, compare those values and select the option with the highest, the succession of choices faced during classical preference elicitation tasks might trigger the emergence of additional heuristics, implemented to perform those tasks in a fast, yet adaptive manner. This project aim at pioneering the isolation of such heuristic development, in a dynamical framework where both the task features and the agents’ own preferences are learned from previous trials, and influence subsequent behavior. This framework suggests that agents’ preferences will depend on the choice sequence, thus vary according to predictable patterns through different instantiations of the same task. Thereby, it captures a new component of individual preferences, which we refer to as task-related preferences. Combining behavioral experiments, computational modelling and functional brain imaging, we propose to reveal and measure the behavioral variance accounted by the task-related preferences, to model their emergence during the task, and to incorporate them in a coherent neuro-cognitive model of decision-making. Overall, this project will contribute to 1) refine current neurocognitive and economic models of decision-making, 2) train a promising cognitive neuroscientist to tackle human decision issues relevant to social sciences, with advanced quantitative economic/computational tools, and 3) foster fruitful cross-talks between scholars from economics, psychology, and neuroscience at the host institution. The scientific contribution seems particularly important given that preferences are one of the current conceptual cornerstones used to understand our society at the micro- and macroeconomic level, to guide and assess public policies aiming to maximize people’s well-being, to characterize normal and pathological behaviors, and to unravel the neurobiological mechanisms underlying decision-making.

 Publications

year authors and title journal last update
List of publications.
2016 Mael Lebreton, Stefano Palminteri
When are inter-individual brain-behavior correlations informative?
published pages: , ISSN: , DOI:
2019-06-14
2016 Leendert van Maanen, Joaquina Couto, Mael Lebreton
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
published pages: e0167377, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0167377
PLOS ONE 11/11 2019-06-14
2017 Germain Lefebvre, Maël Lebreton, Florent Meyniel, Sacha Bourgeois-Gironde, Stefano Palminteri
Behavioural and neural characterization of optimistic reinforcement learning
published pages: 67, ISSN: 2397-3374, DOI: 10.1038/s41562-017-0067
Nature Human Behaviour 1 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREF LEARNHEUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREF LEARNHEUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

TCFLAND2SEA (2020)

Thawing Carbon From LAND to SEA: Microbial Degradation of Organic Matter and Response to Thawing Permafrost in the Northeast Siberian Land-Shelf System

Read More  

EpiSeq (2019)

Single molecule sequencing and biophysical properties of oxidized genomic DNA using magnetic tweezers.

Read More