Opendata, web and dolomites


Learning heuristics in preference elicitation tasks: insights from behavioural, computational and neurobiological investigations

Total Cost €


EC-Contrib. €






 PREF LEARNHEUR project word cloud

Explore the words cloud of the PREF LEARNHEUR project. It provides you a very rough idea of what is the project "PREF LEARNHEUR" about.

heuristic    individuals    highest    neurocognitive    theory    thereby    neuroscientist    additional    maximize    policies    trials    economic    normal    compare    trigger    preferences    predictable    behavior    heuristics    guide    model    isolation    neuroscience    cross    refer    public    talks    contribution    host    accounted    scientific    unravel    refine    tools    computational    suggests    pathological    economics    sciences    patterns    psychology    micro    social    select    neurobiological    neuro    combining    emergence    individual    agents    option    conceptual    pioneering    human    train    sequence    fast    underlying    variance    dynamical    faced    captures    succession    brain    elicitation    mechanisms    quantitative    options    perform    adaptive    cornerstones    vary    decision    models    cognitive    subsequent    learned    choices    fruitful    incorporate    reveal    macroeconomic    influence    coherent    experiments    scholars    preference    seems    although    behaviors    people    assumes    functional    understand    behavioral    framework    imaging    manner    instantiations    society    tackle    attribute   

Project "PREF LEARNHEUR" data sheet

The following table provides information about the project.


Organization address
address: SPUI 21
postcode: 1012WX

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Although decision theory assumes that when making a choice, individuals attribute values to available options, compare those values and select the option with the highest, the succession of choices faced during classical preference elicitation tasks might trigger the emergence of additional heuristics, implemented to perform those tasks in a fast, yet adaptive manner. This project aim at pioneering the isolation of such heuristic development, in a dynamical framework where both the task features and the agents’ own preferences are learned from previous trials, and influence subsequent behavior. This framework suggests that agents’ preferences will depend on the choice sequence, thus vary according to predictable patterns through different instantiations of the same task. Thereby, it captures a new component of individual preferences, which we refer to as task-related preferences. Combining behavioral experiments, computational modelling and functional brain imaging, we propose to reveal and measure the behavioral variance accounted by the task-related preferences, to model their emergence during the task, and to incorporate them in a coherent neuro-cognitive model of decision-making. Overall, this project will contribute to 1) refine current neurocognitive and economic models of decision-making, 2) train a promising cognitive neuroscientist to tackle human decision issues relevant to social sciences, with advanced quantitative economic/computational tools, and 3) foster fruitful cross-talks between scholars from economics, psychology, and neuroscience at the host institution. The scientific contribution seems particularly important given that preferences are one of the current conceptual cornerstones used to understand our society at the micro- and macroeconomic level, to guide and assess public policies aiming to maximize people’s well-being, to characterize normal and pathological behaviors, and to unravel the neurobiological mechanisms underlying decision-making.


year authors and title journal last update
List of publications.
2016 Mael Lebreton, Stefano Palminteri
When are inter-individual brain-behavior correlations informative?
published pages: , ISSN: , DOI:
2016 Leendert van Maanen, Joaquina Couto, Mael Lebreton
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
published pages: e0167377, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0167377
PLOS ONE 11/11 2019-06-14
2017 Germain Lefebvre, Maël Lebreton, Florent Meyniel, Sacha Bourgeois-Gironde, Stefano Palminteri
Behavioural and neural characterization of optimistic reinforcement learning
published pages: 67, ISSN: 2397-3374, DOI: 10.1038/s41562-017-0067
Nature Human Behaviour 1 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREF LEARNHEUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREF LEARNHEUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


NGOs, Transnational Networks and the Transformation of Muslim Communities in Cambodia

Read More  


Neural mechanisms of crossmodal activity in blind and sighted individuals

Read More  

PLECTRA (2020)

Revealing mechanisms of plant-soil feedback in search of trait indicators

Read More