Opendata, web and dolomites


Learning heuristics in preference elicitation tasks: insights from behavioural, computational and neurobiological investigations

Total Cost €


EC-Contrib. €






 PREF LEARNHEUR project word cloud

Explore the words cloud of the PREF LEARNHEUR project. It provides you a very rough idea of what is the project "PREF LEARNHEUR" about.

individual    brain    subsequent    scholars    guide    captures    cross    trials    combining    public    sciences    seems    options    people    coherent    society    manner    computational    trigger    reveal    theory    neurobiological    train    neuro    economic    normal    highest    individuals    framework    functional    neurocognitive    contribution    fruitful    patterns    unravel    select    talks    pioneering    macroeconomic    additional    compare    succession    underlying    elicitation    vary    learned    instantiations    agents    emergence    models    decision    tackle    influence    sequence    economics    preferences    mechanisms    scientific    perform    behavioral    quantitative    heuristics    micro    conceptual    accounted    tools    model    host    heuristic    choices    dynamical    fast    isolation    cognitive    option    maximize    psychology    experiments    neuroscience    incorporate    assumes    imaging    predictable    behavior    understand    refine    although    adaptive    attribute    variance    cornerstones    pathological    preference    refer    behaviors    neuroscientist    social    suggests    human    policies    thereby    faced   

Project "PREF LEARNHEUR" data sheet

The following table provides information about the project.


Organization address
address: SPUI 21
postcode: 1012WX

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Although decision theory assumes that when making a choice, individuals attribute values to available options, compare those values and select the option with the highest, the succession of choices faced during classical preference elicitation tasks might trigger the emergence of additional heuristics, implemented to perform those tasks in a fast, yet adaptive manner. This project aim at pioneering the isolation of such heuristic development, in a dynamical framework where both the task features and the agents’ own preferences are learned from previous trials, and influence subsequent behavior. This framework suggests that agents’ preferences will depend on the choice sequence, thus vary according to predictable patterns through different instantiations of the same task. Thereby, it captures a new component of individual preferences, which we refer to as task-related preferences. Combining behavioral experiments, computational modelling and functional brain imaging, we propose to reveal and measure the behavioral variance accounted by the task-related preferences, to model their emergence during the task, and to incorporate them in a coherent neuro-cognitive model of decision-making. Overall, this project will contribute to 1) refine current neurocognitive and economic models of decision-making, 2) train a promising cognitive neuroscientist to tackle human decision issues relevant to social sciences, with advanced quantitative economic/computational tools, and 3) foster fruitful cross-talks between scholars from economics, psychology, and neuroscience at the host institution. The scientific contribution seems particularly important given that preferences are one of the current conceptual cornerstones used to understand our society at the micro- and macroeconomic level, to guide and assess public policies aiming to maximize people’s well-being, to characterize normal and pathological behaviors, and to unravel the neurobiological mechanisms underlying decision-making.


year authors and title journal last update
List of publications.
2016 Mael Lebreton, Stefano Palminteri
When are inter-individual brain-behavior correlations informative?
published pages: , ISSN: , DOI:
2016 Leendert van Maanen, Joaquina Couto, Mael Lebreton
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
published pages: e0167377, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0167377
PLOS ONE 11/11 2019-06-14
2017 Germain Lefebvre, Maël Lebreton, Florent Meyniel, Sacha Bourgeois-Gironde, Stefano Palminteri
Behavioural and neural characterization of optimistic reinforcement learning
published pages: 67, ISSN: 2397-3374, DOI: 10.1038/s41562-017-0067
Nature Human Behaviour 1 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREF LEARNHEUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREF LEARNHEUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More