Opendata, web and dolomites

PREF LEARNHEUR

Learning heuristics in preference elicitation tasks: insights from behavioural, computational and neurobiological investigations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PREF LEARNHEUR project word cloud

Explore the words cloud of the PREF LEARNHEUR project. It provides you a very rough idea of what is the project "PREF LEARNHEUR" about.

economic    scholars    refer    normal    imaging    accounted    model    experiments    adaptive    computational    compare    economics    manner    neuroscience    influence    heuristics    options    sciences    theory    individuals    instantiations    individual    fast    coherent    macroeconomic    underlying    contribution    guide    understand    host    mechanisms    subsequent    combining    quantitative    suggests    predictable    policies    brain    refine    scientific    fruitful    pathological    succession    micro    additional    cornerstones    although    neurobiological    neuro    train    faced    psychology    elicitation    tools    emergence    talks    behavior    captures    incorporate    behaviors    attribute    public    dynamical    agents    preference    reveal    cognitive    human    neurocognitive    unravel    functional    tackle    thereby    highest    conceptual    cross    trigger    framework    neuroscientist    choices    people    assumes    pioneering    decision    isolation    maximize    heuristic    learned    seems    preferences    sequence    perform    vary    select    social    trials    behavioral    models    option    patterns    variance    society   

Project "PREF LEARNHEUR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT VAN AMSTERDAM 

Organization address
address: SPUI 21
city: AMSTERDAM
postcode: 1012WX
website: www.uva.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://sites.google.com/site/maellebreton/home
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM NL (AMSTERDAM) coordinator 165˙598.00

Map

 Project objective

Although decision theory assumes that when making a choice, individuals attribute values to available options, compare those values and select the option with the highest, the succession of choices faced during classical preference elicitation tasks might trigger the emergence of additional heuristics, implemented to perform those tasks in a fast, yet adaptive manner. This project aim at pioneering the isolation of such heuristic development, in a dynamical framework where both the task features and the agents’ own preferences are learned from previous trials, and influence subsequent behavior. This framework suggests that agents’ preferences will depend on the choice sequence, thus vary according to predictable patterns through different instantiations of the same task. Thereby, it captures a new component of individual preferences, which we refer to as task-related preferences. Combining behavioral experiments, computational modelling and functional brain imaging, we propose to reveal and measure the behavioral variance accounted by the task-related preferences, to model their emergence during the task, and to incorporate them in a coherent neuro-cognitive model of decision-making. Overall, this project will contribute to 1) refine current neurocognitive and economic models of decision-making, 2) train a promising cognitive neuroscientist to tackle human decision issues relevant to social sciences, with advanced quantitative economic/computational tools, and 3) foster fruitful cross-talks between scholars from economics, psychology, and neuroscience at the host institution. The scientific contribution seems particularly important given that preferences are one of the current conceptual cornerstones used to understand our society at the micro- and macroeconomic level, to guide and assess public policies aiming to maximize people’s well-being, to characterize normal and pathological behaviors, and to unravel the neurobiological mechanisms underlying decision-making.

 Publications

year authors and title journal last update
List of publications.
2016 Mael Lebreton, Stefano Palminteri
When are inter-individual brain-behavior correlations informative?
published pages: , ISSN: , DOI:
2019-06-14
2016 Leendert van Maanen, Joaquina Couto, Mael Lebreton
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
published pages: e0167377, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0167377
PLOS ONE 11/11 2019-06-14
2017 Germain Lefebvre, Maël Lebreton, Florent Meyniel, Sacha Bourgeois-Gironde, Stefano Palminteri
Behavioural and neural characterization of optimistic reinforcement learning
published pages: 67, ISSN: 2397-3374, DOI: 10.1038/s41562-017-0067
Nature Human Behaviour 1 2019-06-14

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREF LEARNHEUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREF LEARNHEUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More