Opendata, web and dolomites

One-EG

Wearable Brain Monitoring Technology for Quick Diagnosis of Sleep Disorders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 One-EG project word cloud

Explore the words cloud of the One-EG project. It provides you a very rough idea of what is the project "One-EG" about.

ambulatory    sleep    overnight    disorders    he    pi    wearable    medical    connected    ease    ing    limitation    manually    attaching    heavy    breakthrough    tend    power    bulky    specialists    home    full    unpractically    amongst    monitoring    size    signals    raw    de    diagnosis    standard    single    clinic    automatic    repositioning    first    smaller    phases    times    minus    patient    signal    diagnosing    wires    additionally    tiny    starting    channel    erc    electrodes    neurophysiological    sent    quality    eeg    accuracy    subsequently    create    trained    supervised    head    preferably    amount    ones    lighter    boxes    hours    grant    multiple    techniques    time    emg    places    fact    hardware    impair    disease    biomarkers    certain    channels    limited    comfortability    rem    indicative    lack    ultralow    uncomfortable    diseases    difficulty    hooked    wired    attending    facilitated    expert    monitored    attached    she    eog    sensors    occasionally    analysed   

Project "One-EG" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙997 €
 EC max contribution 149˙997 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2017-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 149˙997.00

Map

 Project objective

The standard method of diagnosing sleep disorders involves the patient attending a sleep clinic overnight where he/she is hooked by trained specialists to bulky, uncomfortable wired sensors, and monitored during sleep; preferably supervised because the sensors tend to get de-attached and require repositioning. The raw signals are subsequently manually analysed by a medical expert, this taking over 2 hours. Occasionally, for certain diseases the patient is sent home with an ambulatory system which is able to provide a very limited amount of information and is only relevant to some disorders. The main limitation of ambulatory sleep monitoring is that neurophysiological channels (EEG, EMG and EOG) cannot be used in practice. These are however the only ones that can provide full information about the different sleep phases as well as certain sleep biomarkers which are indicative of disease. The lack of neurophysiological channels is due to the unpractically high number that is required to identify sleep phases (specifically REM) and the associated difficulty on attaching them. Additionally, they are very uncomfortable for the user because the sensors (electrodes on different places on the head) are connected by wires to bulky and heavy boxes which impair the quality of sleep. This project will use state-of-the-art signal processing and hardware design techniques resulting from the PI’s ERC Starting Grant to create a novel, ultralow power, tiny, user friendly, and- for the first time- single channel EEG wearable technology for automatic monitoring of sleep, and diagnosis of sleep disorders. The technology will represent a major breakthrough because of, amongst others: 1. Its size− over 20 times lighter and 50 times smaller than any other existing system. 2. Its ease of use and comfortability, facilitated by the fact that will be just one-channel EEG. 3. Its accuracy in automatic sleep analysis, comparable to multiple channel (i.e. non wearable) systems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ONE-EG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ONE-EG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More