Opendata, web and dolomites

MINDPICS

When a Profile is worth more than a Thousand of Hashtags: Automatic Inference of Personality Traits based on Images Shared in Social Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MINDPICS project word cloud

Explore the words cloud of the MINDPICS project. It provides you a very rough idea of what is the project "MINDPICS" about.

combination    solely    final    vast    sentiments    anthropology    tools    source    trait    pictures    estimate    sociology    doubling    dollars    hidden    repository    ignored    provides    networks    logos    learning    customer    form    predict    prototype    marketing    million    images    visual    sources    appearing    daily    coverage    geolocalisation    brands    profiles    posts    public    revolutionize    spectrum    clothes    machine    gap    digital    personality    budget    degree    extracted    learners    billion    analytical    accurately    people    validated    soft    opinions    inference    platform    description    2015    political    decision    studies    photos    cultural    alone    exchange    generates    deep    reaching    near    monitoring    65    shared    image    insights    textual    scenes    human    texts    fact    social    brand    publicly    proper    essence    objects    modern    applies    techniques    demands    media    customers    day    discovering    uploaded    understand    generation    accompanying    biometric    despite    playing    interests    communication   

Project "MINDPICS" data sheet

The following table provides information about the project.

Coordinator
VISUAL TAGGING SERVICES 

Organization address
address: LG PARC DE LA RECERCA DE LA UAB EDIF EUREKA CERDANYOLA DEL VALLES
city: BARCELONA
postcode: 8193
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://platform.visual-tagging.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2016-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VISUAL TAGGING SERVICES ES (BARCELONA) coordinator 50˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The social media, as a major platform for communication and information exchange, provides a rich repository of the opinions and sentiments of 2.3 billion users about a vast spectrum of topics. Such knowledge is playing an important role to understand and predict human decision making, while becoming essential for digital marketing, brand monitoring, and customer understanding, among others. Although social marketing budget is doubling each year, reaching 9 billion dollars in 2015 in US alone, the analysis of trends, topics and brands in social networks is based solely on textual posts. Despite the fact that 65% of users are visual learners, the knowledge embedded in the 1.8 billion photos uploaded daily in public profiles is ignored. Based on this gap in coverage, we propose a platform which applies the most modern machine learning techniques, based on Deep Learning, to understand near 1 million images publicly shared per day, for the inference of relevant insights from social profiles. In essence, this visual knowledge is extracted using our current know-how on image understanding, in the form of a working, validated prototype which generates a description of (i) soft-biometric characteristics of people appearing in shared pictures; (ii) their type of clothes, logos, objects and scenes; and, (iii) when available, its geolocalisation and accompanying texts. Working during this project in a proper combination of these sources of knowledge will enable the final product to estimate more accurately the social user's demands and cultural-driven interests, eventually reaching some degree of personality trait description. Discovering the hidden customers of a given brand, based on the pictures shared in their public profiles, will revolutionize the next generation of analytical tools for social networks monitoring, making the process of images understanding an essential source of information in future marketing, anthropology, sociology, and political studies

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MINDPICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MINDPICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.;H2020-EU.2.3.1.)

Assist (2015)

Telocate ASSIST – Development and marketing of an acoustic solution for localization and navigation of people in buildings using the smartphone

Read More  

Gestoos (2017)

The first Behavior Recognition Open Platform

Read More  

Demographica (2017)

Helping marketing campaigns go viral

Read More