Opendata, web and dolomites

STATLEARN SIGNED

The reading brain as a statistical learning machine

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STATLEARN project word cloud

Explore the words cloud of the STATLEARN project. It provides you a very rough idea of what is the project "STATLEARN" about.

erp    co    data    basis    mechanism    issue    genetic    contextual    fourth    efficient    fundamental    letters    perceptual    word    literate    building    tracking    morphemes    impressive    seek    tests    happens    flawlessly    letter    error    learning    performance    faces    drive    extremely    hypothesis    eye    orthographic    frequency    positional    newly    theories    human    languages    understand    probabilities    identification    reading    progressively    visual    cognitive    chunk    mechanisms    nonhuman    psycholinguistic    amount    read    adult    involve    written    objects    astonishingly    array    unknown    readers    largely    nearly    experiments    patterns    lines    packages    primates    encountered    signs    contrasts    transitional    meg    artificial    oriented    endowment    infants    tools    constraints    kindness    internal    statistical    behavioural    larger    units    fmri    ness    free    brings    diversity    smaller    statlearn    despite    language    unfolds    adults    representations    recurrent    vary    underlies    advantage    structure   

Project "STATLEARN" data sheet

The following table provides information about the project.

Coordinator
SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE 

Organization address
address: VIA BONOMEA 265
city: TRIESTE
postcode: 34136
website: www.sissa.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website https://lrlac.sissa.it/projects/statistical-learning-and-reading
 Total cost 1˙498˙210 €
 EC max contribution 1˙498˙210 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE IT (TRIESTE) coordinator 1˙498˙210.00

Map

 Project objective

Despite written language is not part of our genetic endowment, literate adults process an impressive amount of information as they read, and do that extremely flawlessly and nearly error-free. How this happens is largely unknown, and represents a fundamental issue for theories of human learning. Building on data from nonhuman primates, human infants and psycholinguistic experiments on word internal structure, STATLEARN tests the hypothesis that one fundamental cognitive mechanism underlies visual word identification, i.e., statistical learning. Human infants learn to chunk smaller perceptual units (e.g., oriented lines) into larger, meaningful objects (e.g., tools, faces), taking advantage of recurrent patterns in their distribution. As developing readers, they would apply this very same mechanisms to a newly–encountered type of visual objects, i.e., letters. On this basis, they would build progressively higher–order orthographic units, which eventually make their visual word identification as adult readers astonishingly efficient. The project is composed of four work packages. One aims at identifying which principle(s) drive(s) statistical learning, and contrasts overall frequency, contextual diversity, and letter transitional probabilities. Because these factors co-vary in real languages, a second work package will involve adult readers in learning artificial languages, where we will build in any statistical properties we might need to test. A third package will seek signs of statistical learning directly into the performance of developing readers. A fourth package will assess positional constraints in the identification of morphemes (e.g., kind and ness in kindness). These work packages include behavioural, eye tracking, ERP, MEG and fMRI work. Bringing together evidence from such a wide array of approaches will allow to understand how statistical learning unfolds, and what kind of representations it brings into the human reading system.

 Publications

year authors and title journal last update
List of publications.
2019 Maria Ktori, Mara De Rosa, Hector Yamil Vidal Dos Santos, Davide Crepaldi
Morpheme-specific neural representations in skilled adult readers: Evidence from fast periodic visual stimulation
published pages: , ISSN: , DOI:
2019-11-07
2019 Katarina Marjanovič, Davide Crepaldi
Morphological priming of inflectional suffixes
published pages: , ISSN: , DOI:
2019-11-07
2019 Jaroslaw Lelonkiewicz, Davide Crepaldi
Discovering the Lexicon\'s Statistical Structure in Reading
published pages: , ISSN: , DOI:
2019-11-07
2018 Hector Yamil Vidal Dos Santos, Davide Crepaldi
From Letters to Words, Through Bigrams
published pages: , ISSN: , DOI:
2019-11-07
2018 Pescuma V.N., Ktori M., Cevoli B., Lomi E., Franzon F. & Crepaldi D.
An eye-tracking database of natural reading in Italian children
published pages: , ISSN: , DOI:
2019-06-19
2018 De Rosa M. & Crepaldi D.
Morpho-orthographic analysis does not depend on affix frequency
published pages: , ISSN: , DOI:
2019-06-19
2017 Crepaldi D., Pescuma V., Ktori M., Cevoli B., Franzon F. and Lomi E.
Statistical Learning and Learning to Read
published pages: , ISSN: , DOI:
2019-06-19
2017 Pescuma V., Ktori M., Cevoli B., Lomi E., Franzon F. & Crepaldi D.
An eye-tracking investigation of natural reading in children
published pages: , ISSN: , DOI:
2019-06-19
2017 http://v.calameo.com/?bkcode=003272336398fb9b8fabb&mode=full
Una scuola ai vertici europei
published pages: 81, ISSN: , DOI:
PLATINUM - Le chiavi per lo sviluppo (ricerca&innovazione) July 2017 2019-06-19
2017 Pescuma V., Ktori M., Cevoli B., Lomi E., Franzon F. & Crepaldi D.
Statistical Learning and Visual Word Identification: An eye-tracking investigation of natural reading in children
published pages: , ISSN: , DOI:
2019-06-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STATLEARN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STATLEARN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More