Opendata, web and dolomites

LiftTrain

Aerodynamic Lift force of Trains subjected to cross winds—get it right!

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LiftTrain project word cloud

Explore the words cloud of the LiftTrain project. It provides you a very rough idea of what is the project "LiftTrain" about.

moment    roughness    academic    accurately    trains    stocks    accurate    prediction    lake    numerical    force    time    tangible    technique    railway    italy    estimate    collaborator    skills    beneficiary    move    subjected    financial    underestimation    accuracy    extend    predict    smooth    fellowship    computational    types    model    first    navier    suffer    steady    chalmers    vehicles    wind    regarding    criteria    researcher    coefficient    winds    hence    velocities    physical    approved    tunnel    either    lift    train    significantly    modeling    rolling    certification    methodology    techniques    improvements    dynamics    experimental    benefits    rans    exceptional    surface    complementary    forces    interfleet    simulate    experiment    predicting    cross    cfd    training    ing    environment    operators    building    standardize    experiments    aerodynamic    underpinned    moving    regulations    effect    innovative    validated    polimi    overestimation    rail    opportunity    sweden    reynolds    er    pressures    unsteady    fluid    industrial   

Project "LiftTrain" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.birmingham.ac.uk/research/activity/railway/research/aerodynamics/aerodynamic-lift-force-trains-lifttrain.aspx
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-12-08   to  2018-12-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 195˙454.00

Map

 Project objective

A European-wide move to standardize the criteria for certification of railway vehicles has lead to the development of regulations for rail operators regarding velocities and pressures generated by trains and on train in cross winds. There are two approved methodologies currently used in these regulations; physical modeling using the wind tunnel experiments and numerical modeling using computational fluid dynamics (CFD) techniques. Although there are different types of CFD techniques, yet all of them suffer the lake of accuracy in predicting the values of the experimental lift force resulting on either overestimation or underestimation of the rolling moment coefficient. The aim of this innovative Fellowship is to develop an accurate numerical technique based on the steady Reynolds Average Navier Stocks (RANS) capable of accurately predict the aerodynamic forces. The methodology will be based on wind tunnel experiments, moving model testing and different types of steady and unsteady CFD techniques. In this project we will investigate for the first time the effect of surface roughness on the lift force prediction of a train subjected to cross wind. Building on the complementary skills of the Experienced Researcher (ER) (numerical modeling) and the Beneficiary (CFD & physical modeling), we will extend significantly the existing knowledge of modeling trains on smooth surface to include a novel numerical technique to simulate the surface roughness and hence better estimate the lift force coefficient. Our work will be validated using wind tunnel experiment at POLIMI, ITALY and underpinned with those at our industrial collaborator, Interfleet and academic partner Chalmers, Sweden. Success will define improvements to prediction of the lift force coefficient in both physical experiments and CFD modeling, offering tangible environment and financial benefits and providing an exceptional training opportunity for the ER.

 Publications

year authors and title journal last update
List of publications.
2018 Mohammad Mehdi Rashidi, Hassan Hemida
Numerical Simulation of the Flow around a High-Speed Train Subjected to Non-uniform Crosswinds
published pages: , ISSN: , DOI:
2019-06-13
2018 Mohammad Mehdi Rashidi, Hassan Hemida
Numerical Simulation of the Flow Around a Train model with Uniform and Non-uniform Crosswinds
published pages: , ISSN: , DOI:
2019-06-13
2018 M.M. Rashidi, A. Hajipour, T. Li, Z. Yang, Q. Li
A Review of Recent Studies on Simulations for Flow around High-Speed Trains
published pages: , ISSN: 2383-4536, DOI:
Journal of Applied and Computational Mechanics 2019-05-28
2018 T. Li, H. Hemida, J. Zhang, M. Rashidi, D. Flynn
Comparisons of Shear Stress Transport and Detached Eddy Simulations of the Flow Around Trains
published pages: , ISSN: 0098-2202, DOI:
Journal of Fluid Engineering 2019-05-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIFTTRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIFTTRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

VINCI (2020)

The Value of Information and Choice to Improve Control.

Read More