Opendata, web and dolomites


Aerodynamic Lift force of Trains subjected to cross winds—get it right!

Total Cost €


EC-Contrib. €






 LiftTrain project word cloud

Explore the words cloud of the LiftTrain project. It provides you a very rough idea of what is the project "LiftTrain" about.

polimi    train    either    prediction    simulate    computational    navier    trains    model    opportunity    exceptional    validated    steady    standardize    stocks    aerodynamic    time    complementary    force    skills    reynolds    operators    lift    effect    numerical    dynamics    underpinned    approved    rolling    extend    railway    types    technique    ing    experimental    beneficiary    coefficient    regulations    suffer    cfd    er    move    forces    innovative    improvements    moving    roughness    predicting    physical    sweden    hence    experiments    wind    methodology    predict    interfleet    industrial    techniques    underestimation    researcher    surface    vehicles    benefits    building    accurately    tunnel    rans    financial    overestimation    moment    smooth    significantly    cross    rail    modeling    first    criteria    fellowship    academic    tangible    experiment    fluid    accuracy    chalmers    certification    subjected    velocities    lake    collaborator    pressures    unsteady    environment    regarding    italy    winds    accurate    estimate    training   

Project "LiftTrain" data sheet

The following table provides information about the project.


Organization address
address: Edgbaston
postcode: B15 2TT

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-12-08   to  2018-12-07


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

A European-wide move to standardize the criteria for certification of railway vehicles has lead to the development of regulations for rail operators regarding velocities and pressures generated by trains and on train in cross winds. There are two approved methodologies currently used in these regulations; physical modeling using the wind tunnel experiments and numerical modeling using computational fluid dynamics (CFD) techniques. Although there are different types of CFD techniques, yet all of them suffer the lake of accuracy in predicting the values of the experimental lift force resulting on either overestimation or underestimation of the rolling moment coefficient. The aim of this innovative Fellowship is to develop an accurate numerical technique based on the steady Reynolds Average Navier Stocks (RANS) capable of accurately predict the aerodynamic forces. The methodology will be based on wind tunnel experiments, moving model testing and different types of steady and unsteady CFD techniques. In this project we will investigate for the first time the effect of surface roughness on the lift force prediction of a train subjected to cross wind. Building on the complementary skills of the Experienced Researcher (ER) (numerical modeling) and the Beneficiary (CFD & physical modeling), we will extend significantly the existing knowledge of modeling trains on smooth surface to include a novel numerical technique to simulate the surface roughness and hence better estimate the lift force coefficient. Our work will be validated using wind tunnel experiment at POLIMI, ITALY and underpinned with those at our industrial collaborator, Interfleet and academic partner Chalmers, Sweden. Success will define improvements to prediction of the lift force coefficient in both physical experiments and CFD modeling, offering tangible environment and financial benefits and providing an exceptional training opportunity for the ER.


year authors and title journal last update
List of publications.
2018 Mohammad Mehdi Rashidi, Hassan Hemida
Numerical Simulation of the Flow around a High-Speed Train Subjected to Non-uniform Crosswinds
published pages: , ISSN: , DOI:
2018 Mohammad Mehdi Rashidi, Hassan Hemida
Numerical Simulation of the Flow Around a Train model with Uniform and Non-uniform Crosswinds
published pages: , ISSN: , DOI:
2018 M.M. Rashidi, A. Hajipour, T. Li, Z. Yang, Q. Li
A Review of Recent Studies on Simulations for Flow around High-Speed Trains
published pages: , ISSN: 2383-4536, DOI:
Journal of Applied and Computational Mechanics 2019-05-28
2018 T. Li, H. Hemida, J. Zhang, M. Rashidi, D. Flynn
Comparisons of Shear Stress Transport and Detached Eddy Simulations of the Flow Around Trains
published pages: , ISSN: 0098-2202, DOI:
Journal of Fluid Engineering 2019-05-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIFTTRAIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIFTTRAIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More