Opendata, web and dolomites

Brillouin4Life SIGNED

Development of advanced optical tools for studying cellular mechanics at high spatial and temporal resolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Brillouin4Life project word cloud

Explore the words cloud of the Brillouin4Life project. It provides you a very rough idea of what is the project "Brillouin4Life" about.

biomechanics    biology    self    destructive    thereby    advancements    materials    interactions    organisation    mechanical    assessing    suffer    technique    cellular    cells    phototoxicity    microscopy    datasets    living    photodamage    encoded    visualized    interdisciplinary    illumination    bm    resolution    revolutionary    speed    shape    live    elastic    minimizing    mechanics    developmental    investigations    innovative    methodological    despite    limited    correlative    difficulties    elastography    multicellular    temporal    biophysics    visco    multiplexed    diffraction    measured    fellow    interwoven    tissue    fluorescence    life    accurately    prohibiting    probe    time    overcome    components    virtually    compartments    penetration    contact    started    improvements    molecular    understand    tool    invasive    morphogenesis    quantification    lately    implementations    spatio    routinely    genome    obtain    organismal    drawbacks    label    group    combine    emerged    maximize    fashion    biologists    technologies    3d    ongoing    modalities    free    quantify    brillouin    sciences    elasticity    selective    imaging    plane    optical   

Project "Brillouin4Life" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙999˙289 €
 EC max contribution 1˙999˙289 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 1˙999˙289.00

Map

 Project objective

A long-standing aim in the life sciences is to understand development and morphogenesis, i.e. how organismal shape is encoded by the genome and how cellular mechanics are involved in its execution. Lately, investigations have started to focus on the mechanical properties of the involved multicellular compartments, and the interwoven mechanical - molecular interactions at the cellular scale. While molecular components can routinely be visualized with fluorescence microscopy, assessing the mechanical properties of living cells with similar spatio-temporal resolution in a non-invasive fashion has long been an open challenge.

Recently, a new type of optical elastography, namely Brillouin microscopy (BM), has emerged as a non-destructive, label- and contact-free technique which can probe visco-elastic properties of materials with diffraction-limited resolution in 3D. Yet, despite ongoing improvements, virtually all current implementations suffer from very low speed, high phototoxicity, and difficulties in quantification, thus prohibiting meaningful investigations in the life sciences.

In this interdisciplinary proposal, my group will develop unique and innovative optical imaging technologies based on BM to overcome its current drawbacks and to establish it as a revolutionary tool for live tissue and cellular biophysics studies. In particular, we will work towards a highly-multiplexed BM with selective-plane illumination to maximize speed, resolution and depth penetration, while minimizing photodamage (Aim 1). At the same time, we will combine BM with other imaging modalities that will allow us to obtain correlative datasets and to accurately quantify the measured mechanical properties (Aim 2). We will then apply these methodological advancements together with fellow biologists to study the role of elasticity in tissue morphogenesis and self-organisation, thereby contributing to a better understanding of the role of biomechanics in developmental biology (Aim 3).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BRILLOUIN4LIFE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BRILLOUIN4LIFE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More