Opendata, web and dolomites


Illuminating the dark side of surface meteorology: creating a novel framework to explain atmospheric transport and turbulent mixing in the weak-wind boundary layer

Total Cost €


EC-Contrib. €






 DarkMix project word cloud

Explore the words cloud of the DarkMix project. It provides you a very rough idea of what is the project "DarkMix" about.

sites    transfer    hypotheses    life    instationarities    soil    dark    magnitude    flow    resolve    airflows    carbon    mechanisms    pursuing    harp    incorporating    first    city    greenhouse    theories    light    framework    plants    simulations    unprecedented    unexplored    physically    animals    leap    questions    hazards    quality    orders    interdisciplinary    humans    profound    radically    edge    breaking    effect    societally    hundreds    calm    wind    cycle    alternatives    eluded    covariance    inform    water    deci    distributed    computation    ground    extreme    shear    losses    observe    risks    scales    exchange    plant    mitigated    quantum    transport    valley    dimension    theoretical    surface    takes    boundary    physics    links    turbulence    meters    heat    seconds    dimensional    substances    gases    weak    submeso    mixing    innovations    fluxes    window    impacts    giving    fail    experimental    motions    grassland    biogeochemistry    occupies    models    layer    urban    agricultural    climate    creates    optic    air    forecasts    forest    topographic    fog    nights    landscape    island    pollution    leaving    uncertain    weather    terrain    sensing    directional    cutting    fiber    largely    investigation    meteorology    time    proper    answers    fundamental    co2    fractions    darkmix    eddy    technological    abundance    nature    cold    bear    temperature    substantial    earth    unknown   

Project "DarkMix" data sheet

The following table provides information about the project.


Organization address
postcode: 95447

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙898˙103 €
 EC max contribution 1˙898˙103 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BAYREUTH DE (BAYREUTH) coordinator 1˙898˙103.00


 Project objective

Surface meteorology impacts the abundance and quality of life on Earth through the transfer and mixing of light, heat, water, CO2, and other substances controlling the resources for humans, plants, and animals. However, current theories and models fail when airflows and turbulence are weak during calm nights leaving weather and climate forecasts uncertain. This ‘dark side’ occupies substantial fractions of time and our landscape, its physics are largely unknown, and has eluded proper experimental investigation. DarkMix creates technological and theoretical innovations to observe and explain transport and mixing in the weak-wind boundary layer. Its ambitious goal is a radically new framework incorporating unexplored mechanisms such as submeso-scale motions, flow instationarities, and directional shear to effect a quantum leap in understanding the air-plant-soil exchange. DarkMix will build the ground-breaking first-ever fiber-optic distributed temperature sensing harp to fully resolve the 3-dimensional flow and air temperature fields and enable unprecedented computation of eddy covariance fluxes at scales of seconds over 4 orders of magnitude (deci- to hundreds of meters). Both key innovations bear significant risks of technical and fundamental nature, which are mitigated by pursuing alternatives. Measurements will inform cutting-edge large eddy simulations to test hypotheses. The interdisciplinary dimension takes DarkMix to a unique set of weak-wind sites including a valley-bottom grassland, a forest in complex terrain, and a city to investigate topographic effects, the forest carbon cycle, and the urban heat island. DarkMix will open a new window for surface meteorology and its links to air quality, biogeochemistry, and climate change by giving physically meaningful and societally relevant answers to profound questions such as the exchange of greenhouse gases, hazards from ground fog, urban pollution, and agricultural losses through extreme cold air.


year authors and title journal last update
List of publications.
2019 Karl Lapo, Anita Freundorfer, Lena Pfister, Johann Schneider, John Steven Selker, Christoph Karl Thomas
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables
published pages: , ISSN: 1867-1381, DOI: 10.5194/amt-2019-188
Atmospheric Measurement Techniques Discussions 2020-02-27
2019 Lioba Lucia Martin
Observing the weak wind boundary layer during the Large Eddy Observatory Voitsumra Experiment (LOVE) with a Doppler Wind LiDAR
published pages: 29, ISSN: , DOI:
Bachelor Thesis in Micrometeorology, Geoecology Program 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DARKMIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DARKMIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

FICOMOL (2019)

Field Control of Cold Molecular Collisions

Read More  

HOLI (2019)

Deep Learning for Holistic Inference

Read More