Opendata, web and dolomites

MAGSPEC SIGNED

Spectra of Molecules in Strong Magnetic Fields

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MAGSPEC project word cloud

Explore the words cloud of the MAGSPEC project. It provides you a very rough idea of what is the project "MAGSPEC" about.

theory    severely    neutron    interaction    uniform    earth    breakdown    play    reveal    energies    ie    multidisciplinary    compute       fundamental    interesting    electronic    benchmarking    accurately    quantum    stars    situations    molecules    employed    methodology    objects    spin    stellar    understand    energy    orbital    source    intermediate    levels    inter    forces    cc    regimes    approximation    chemistry    interpret    mrcc    regime    exchange    dwarfs    data    spectroscopy    explored    functional    varying    hartree    perturbation    surfaces    shaping    approximations    tackling    sdft    density    correlation    distort    perturbatively    collinear    removed    perturbative    weaker    functionals    strengths    mechanism    particle    magnetic    spectra    srcc    excitation    distortion    10    pertinent    standard    distortions    astrochemical    practical    random    dft    terrestrial    complexity    theoretical    microscopic    analysing    physics    formulated    fock    principles    little    relativistic    nor    imply    types    cdft    white    phenomena    describe   

Project "MAGSPEC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITETET I OSLO 

Organization address
address: PROBLEMVEIEN 5-7
city: OSLO
postcode: 313
website: www.uio.no

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Total cost 208˙400 €
 EC max contribution 208˙400 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-02-15   to  2021-01-22

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITETET I OSLO NO (OSLO) coordinator 208˙400.00

Map

 Project objective

Electronic spectroscopy is one among several types of spectroscopy employed to study molecules in stellar objects. Strong magnetic fields, as in white-dwarfs and neutron stars, can severely distort these spectra. To accurately interpret the data, we must understand the forces shaping the spectra in situations so far removed from terrestrial conditions. Such strong fields also imply a breakdown of the perturbative mechanism commonly used for studying magnetic phenomena in the pertinent regimes on earth. We shall focus on the intermediate regime of field strengths (~10^5 T), where, neither the magnetic field nor the inter-particle interaction can be treated as a perturbation leading to novel physics and chemistry, that remains little explored for molecules. This project seeks to develop the methodology to compute excitation energies and potential energy surfaces in the presence of strong uniform and non-uniform magnetic fields, included non-perturbatively, at varying levels of theoretical complexity (Hartree-Fock, Density Functional Theory, Random Phase Approximation, SRCC and MRCC) and study the distortion of these spectra across a range of magnetic field strengths. We shall focus on analysing the source of these distortions at the microscopic level, ie. which of orbital effects, spin effects, correlation effects and relativistic effects play the determining role. This project is multidisciplinary using principles of quantum chemistry in tackling astrochemical problems. The study is fundamental and is expected to reveal interesting results relevant even for the weaker fields on earth. The benchmarking of the standard DFT exchange-correlation functionals against CC in the regime of strong magnetic fields will have a long-term impact as most existing DFT approximations have been formulated within DFT or collinear spin DFT (SDFT); practical DFT functionals to describe molecules in magnetic fields (e.g. at the CDFT or non-collinear SDFT level) are much less developed.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGSPEC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGSPEC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More