Opendata, web and dolomites

MAGSPEC SIGNED

Spectra of Molecules in Strong Magnetic Fields

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MAGSPEC project word cloud

Explore the words cloud of the MAGSPEC project. It provides you a very rough idea of what is the project "MAGSPEC" about.

relativistic    spectroscopy    strengths    dft       methodology    terrestrial    ie    cc    particle    sdft    neutron    breakdown    magnetic    srcc    data    analysing    principles    hartree    approximations    electronic    correlation    phenomena    types    energies    interesting    earth    perturbative    functional    mrcc    10    cdft    surfaces    theory    chemistry    spectra    regime    perturbatively    stellar    reveal    interpret    levels    pertinent    exchange    standard    quantum    physics    collinear    describe    white    source    situations    functionals    perturbation    distortions    multidisciplinary    nor    molecules    distortion    fock    benchmarking    understand    energy    theoretical    density    mechanism    imply    uniform    excitation    little    weaker    varying    shaping    distort    practical    explored    spin    random    regimes    microscopic    approximation    interaction    compute    objects    forces    fundamental    employed    dwarfs    inter    intermediate    severely    formulated    tackling    complexity    accurately    stars    orbital    play    removed    astrochemical   

Project "MAGSPEC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITETET I OSLO 

Organization address
address: PROBLEMVEIEN 5-7
city: OSLO
postcode: 313
website: www.uio.no

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Total cost 208˙400 €
 EC max contribution 208˙400 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-02-15   to  2021-01-22

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITETET I OSLO NO (OSLO) coordinator 208˙400.00

Map

 Project objective

Electronic spectroscopy is one among several types of spectroscopy employed to study molecules in stellar objects. Strong magnetic fields, as in white-dwarfs and neutron stars, can severely distort these spectra. To accurately interpret the data, we must understand the forces shaping the spectra in situations so far removed from terrestrial conditions. Such strong fields also imply a breakdown of the perturbative mechanism commonly used for studying magnetic phenomena in the pertinent regimes on earth. We shall focus on the intermediate regime of field strengths (~10^5 T), where, neither the magnetic field nor the inter-particle interaction can be treated as a perturbation leading to novel physics and chemistry, that remains little explored for molecules. This project seeks to develop the methodology to compute excitation energies and potential energy surfaces in the presence of strong uniform and non-uniform magnetic fields, included non-perturbatively, at varying levels of theoretical complexity (Hartree-Fock, Density Functional Theory, Random Phase Approximation, SRCC and MRCC) and study the distortion of these spectra across a range of magnetic field strengths. We shall focus on analysing the source of these distortions at the microscopic level, ie. which of orbital effects, spin effects, correlation effects and relativistic effects play the determining role. This project is multidisciplinary using principles of quantum chemistry in tackling astrochemical problems. The study is fundamental and is expected to reveal interesting results relevant even for the weaker fields on earth. The benchmarking of the standard DFT exchange-correlation functionals against CC in the regime of strong magnetic fields will have a long-term impact as most existing DFT approximations have been formulated within DFT or collinear spin DFT (SDFT); practical DFT functionals to describe molecules in magnetic fields (e.g. at the CDFT or non-collinear SDFT level) are much less developed.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGSPEC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGSPEC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More