Opendata, web and dolomites

ESCAPE-2 SIGNED

Energy-efficient SCalable Algorithms for weather and climate Prediction at Exascale

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ESCAPE-2 project word cloud

Explore the words cloud of the ESCAPE-2 project. It provides you a very rough idea of what is the project "ESCAPE-2" about.

parallel    time    flexible    ready    foundations    accelerated    cross    pioneered    computations    mathematics    solvers    operated    multiple    machine    learning    resilience    benchmarks    discretization    invests    1960s    prediction    forming    sum    capability    sub    portability    algorithm    iterative    structures    dynamics    combining    community    thereby    accuracy    scales    originating    bespoke    data    world    performance    programming    solution    forecasting    class    reassessing    proven    mathematical    esd    proofed    algorithmic    supporting    optimize    tools    significantly    efforts    model    techniques    at    hard    combined    effect    domain    implementing    levels    weather    energy    connecting    ensemble    combines    basis    components    overlapping    physics    demonstrators    earth    grid    models    strengthen    soft    numerical    extreme    exascale    disciplinary    spatial    escape    quantify    uranie    quantification    computing    accelerating    scalable    productive    climate    computation    stepping   

Project "ESCAPE-2" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 

Organization address
address: SHINFIELD PARK
city: READING
postcode: RG2 9AX
website: www.ecmwf.int

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙999˙650 €
 EC max contribution 3˙999˙650 € (100%)
 Programme 1. H2020-EU.1.2.2. (FET Proactive)
 Code Call H2020-FETHPC-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS UK (READING) coordinator 767˙548.00
2    EIDGENOESSISCHES DEPARTEMENT DES INNERN CH (BERN) participant 439˙750.00
3    INSTITUT ROYAL METEOROLOGIQUE DE BELGIQUE BE (BRUXELLES) participant 387˙485.00
4    LOUGHBOROUGH UNIVERSITY UK (LOUGHBOROUGH) participant 359˙000.00
5    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) participant 356˙497.00
6    DANMARKS METEOROLOGISKE INSTITUT DK (KOBENHAVN) participant 307˙000.00
7    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) participant 265˙625.00
8    POLITECNICO DI MILANO IT (MILANO) participant 256˙250.00
9    DEUTSCHES KLIMARECHENZENTRUM GMBH DE (HAMBURG) participant 255˙000.00
10    BULL SAS FR (LES CLAYES SOUS BOIS) participant 242˙993.00
11    BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION ES (BARCELONA) participant 232˙500.00
12    FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI IT (LECCE) participant 130˙000.00

Map

 Project objective

ESCAPE-2 will develop world-class, extreme-scale computing capabilities for European operational numerical weather and climate prediction, and provide the key components for weather and climate domain benchmarks to be deployed on extreme-scale demonstrators and beyond. This will be achieved by developing bespoke and novel mathematical and algorithmic concepts, combining them with proven methods, and thereby reassessing the mathematical foundations forming the basis of Earth system models. ESCAPE-2 also invests in significantly more productive programming models for the weather-climate community through which novel algorithm development will be accelerated and future-proofed. Eventually, the project aims at providing exascale-ready production benchmarks to be operated on extreme-scale demonstrators (EsD) and beyond. ESCAPE-2 combines cross-disciplinary uncertainty quantification tools (URANIE) for high-performance computing, originating from the energy sector, with ensemble based weather and climate models to quantify the effect of model and data related uncertainties on forecasting – a capability, which weather and climate prediction has pioneered since the 1960s. The mathematics and algorithmic research in ESCAPE-2 will focus on implementing data structures and tools supporting parallel computation of dynamics and physics on multiple scales and multiple levels. Highly-scalable spatial discretization will be combined with proven large time-stepping techniques to optimize both time-to-solution and energy-to-solution. Connecting multi-grid tools, iterative solvers, and overlapping computations with flexible-order spatial discretization will strengthen algorithm resilience against soft or hard failure. In addition, machine learning techniques will be applied for accelerating complex sub-components. The sum of these efforts will aim at achieving at the same time: performance, resilience, accuracy and portability.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESCAPE-2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESCAPE-2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.2.)

HPCWE (2019)

High performance computing for wind energy

Read More  

EPiGRAM-HS (2018)

Exascale Programming Models for Heterogeneous Systems

Read More  

NEUROTECH (2018)

Neuromorphic Technology

Read More