Opendata, web and dolomites

AI4EMS SIGNED

Artificial Intelligence for Emergency Medical Services: a smart digital assistant for faster and more accurate cardiac arrest recognition during emergency calls

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AI4EMS project word cloud

Explore the words cloud of the AI4EMS project. It provides you a very rough idea of what is the project "AI4EMS" about.

render    intelligence    worldwide    minute    first    analysing    medical    dispatcher    2003    tools    disrupt    ohca    device    causes    efficiency    society    calls    emergency    accuracy    services    triage    commercialization    2024    communicating    analytics    action    healthcare    10    ems    ict    historical    single    86    reducing    speech    created    humans    guidelines    natural    2012    hospital    ai4ems    decreasing    critical    delay    artificial    upgrade    95    language    solution    decision    assistant    127    million    dispatch    leveraging    total    survival    minutes    ai    2020    prior    disruptive    leaders    dispatchers    320    situations    strategies    chances    activating    revenues    amounts    supporting    collapse    accurate    2016    market    cardiac    faster    recognise    manner    death    recognition    accessed    commercialisation    digital    secure    presenting    forecasted    unfeasible    world    almost    nvidia    tx1    73    saas       human    jobs    smart    plan    recognising    defibrillation    dsm    out    arrest    sales    struggling    data    insights    ehealth    economy    supports    time   

Project "AI4EMS" data sheet

The following table provides information about the project.

Coordinator
CORTI APS 

Organization address
address: BLEGDAMSVEJ 6
city: KOBENHAVN
postcode: 2200
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website https://corti.ai/
 Total cost 2˙055˙976 €
 EC max contribution 1˙439˙183 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-2
 Funding Scheme SME-2
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CORTI APS DK (KOBENHAVN) coordinator 1˙439˙183.00

Map

 Project objective

Out-of-Hospital Cardiac Arrest (OHCA) is one of the leading causes of death worldwide. It is a time-critical condition with survival chances decreasing by 10% with every minute of delay from collapse to defibrillation. Currently, Emergency Medical Services (EMS) dispatchers use guidelines to recognise OHCA during emergency calls prior to activating the emergency response system. EMS are struggling as emergency calls have increased in Europe from 100 million calls in 2003 to 320 million in 2016. Thus, assistant decision tools will be necessary to help EMS to faster identify OHCA situations.

Our solution, AI4EMS, is the first and only smart digital assistant for EMS dispatchers that supports the triage decision-making by: 1) processing and analysing emergency calls in real-time; 2) recognising OHCA in an evidence-based process from large amounts of historical data (unfeasible to humans); and 3) presenting the most important insights to the EMS dispatcher in a user friendly manner. AI4EMS allows for faster (reducing almost 3 minutes on average) and more accurate (increase from 73.9% human accuracy to 95%) OHCA recognition by leveraging advanced speech analytics and AI. We offer a user-friendly and secure SaaS solution capable of communicating using Natural Language, accessed via a Nvidia TX1-based device. We are directly supporting the eHealth Action Plan 2012-2020 and Digital Single Market (DSM) strategies, by providing a disruptive ICT technology to improve EMS dispatch efficiency and triage accuracy – which will impact the economy and society at large.

With the upgrade and commercialisation of AI4EMS we will disrupt the Artificial Intelligence (AI) market for healthcare taking a step further on our goal to become world leaders in EMS artificial intelligence. Forecasted sales will render revenues of €86.7 million in the first five years of commercialization and a total of 127 new jobs will be created by 2024.

 Deliverables

List of deliverables.
AI4EMS online content Websites, patent fillings, videos etc. 2019-08-01 13:01:00

Take a look to the deliverables list in detail:  detailed list of AI4EMS deliverables.

 Publications

year authors and title journal last update
List of publications.
2020 Andreas Cleve, Dimitri Devillers, Matteo Palladini, Jerome Paris, Rose Michael, Etienne Faure, Rodolfo Bonora
Detecting Out-of-Hospital Cardiac Arrest Using Artificial Intelligence
published pages: , ISSN: , DOI:
2020-02-13
2019 Valentin Liévin, Andrea Dittadi, Lars Maaløe, Ole Winther
Towards Hierarchical Discrete Variational Autoencoders
published pages: , ISSN: , DOI:
NeurIPS Workshop on Advances in Approximate Bayesian Inference 2020-02-13
2017 Marius Paraschiv, Lasse Borgholt, Tycho Max Sylvester Tax, Marco Singh, Lars Maaløe
Exploiting Nontrivial Connectivity for Automatic Speech Recognition
published pages: , ISSN: , DOI:
NIPS workshop on machine learning for audio 2019-08-05
2019 Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther
BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling
published pages: , ISSN: , DOI:
arXiv preprint arXiv:1902.02102 2019-08-05
2017 Tycho Max Sylvester Tax, Jose Luis Diez Antich, Hendrik Purwins, Lars Maaløe
Utilizing Domain Knowledge in End-to-End Audio Processing
published pages: , ISSN: , DOI:
31st Conference on Neural Information Processing Systems (NIPS 2017) 2019-08-05
2019 Stig Nikolaj Blomberg, Fredrik Folke, Annette Kjær Ersbøll, Helle Collatz Christensen, Christian Torp-Pedersen, Michael R. Sayre, Catherine R. Counts, Freddy K. Lippert
Machine learning as a supportive tool to recognize cardiac arrest in emergency calls
published pages: 322-329, ISSN: 0300-9572, DOI: 10.1016/j.resuscitation.2019.01.015
Resuscitation 138 2019-08-06
2018 Jan Kremer, Corti, Copenhagen, Denmark, jk@corti.ai Lasse Borgholt, Corti, Copenhagen, Denmark, lb@corti.ai Lars Maaløe , Corti, Copenhagen, Denmark, lm@corti.ai
On the Inductive Bias of Word-Character-Level Multi-Task Learning for Speech Recognition
published pages: , ISSN: , DOI:
32nd Conference on Neural Information Processing Systems (NeurIPS 2018) 2019-08-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AI4EMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AI4EMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More  

VINOQUANT11SUPERPLUS (2019)

A digital based system for measuring, showing and regulation of the complexe system of wine feremtation with high precision via a Bluetooth -Refractometer, a Software and a Bluetooth Thermostat

Read More  

DeltaQon (2019)

IOT and cloud computing for online medical analysis service platform

Read More