Opendata, web and dolomites

MesuR SIGNED

Metric-measure inequalities in sub-Riemannian manifolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MesuR project word cloud

Explore the words cloud of the MesuR project. It provides you a very rough idea of what is the project "MesuR" about.

allowed    respectively    backgrounds    stg    underlying    sub    singular    spaces    adjointness    theory    framework    metric    expansion    view    sr    encoding    proving    point    le    conjectured    dynamics    original    variational    manifolds    prove    riemannian    arising    endowed    action    inequalities    amounting    thanks    kernel    employed    literature    mesur    received    deepen    qualitative    interaction    relations    operators    novelty    techniques    geometric    pansu    pi    functional    donne    particles    equation    class    laplacian    erc    context    conjecture    hypoelliptic    gecomethods    region    naturally    geomeg    follow    boscain    geometry    smooth    dynamical    2017    isoperimetric    completeness    opposite    space    solutions    impulse    obtain    presenting    generalizations    singularities    informations    innovative    intrinsic    supervisor    2016    heisenberg    heat    group    self    stochastic    quantum    usually    suitable    theoretic    2010    shape    frame    confinement    estimates   

Project "MesuR" data sheet

The following table provides information about the project.

Coordinator
SORBONNE UNIVERSITE 

Organization address
address: 21 RUE DE L'ECOLE DE MEDECINE
city: PARIS
postcode: 75006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SORBONNE UNIVERSITE FR (PARIS) coordinator 173˙076.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The goal of MesuR is to deepen our knowledge of geometric and dynamical properties of a class of metric-measure spaces, called sub-Riemannian (sR) manifolds. These are generalizations of Riemannian manifolds, naturally arising in the frame of control theory and hypoelliptic operators. SR geometry is a theory in expansion, and it recently received a great impulse thanks to two ERC-StG on this topic: “GeCoMethods” (2010-2016, PI: U. Boscain), and “GeoMeG” (2017–now, PI: E. Le Donne). In this action we focus on sR manifolds endowed with intrinsic measures. These have been introduced in the frame of geometric control theory: as a key novelty, they are allowed here to have singularities, opposite to the smooth measures usually employed in the existing literature on geometry and analysis in sR manifolds. In this framework, we aim at proving: (1) sR isoperimetric inequalities for singular measures, and investigate relations with the standing Pansu’s conjecture about the shape of isoperimetric sets in the Heisenberg group; (2) Essential self-adjointness and stochastic completeness of the intrinsic sR Laplacian, amounting to prove the conjectured confinement of the heat and of quantum particles to the non-singular region; (3) Heat kernel estimates, i.e., qualitative informations on the solutions to the Heat equation for the intrinsic sR Laplacian. Our objectives will follow by proving suitable functional inequalities encoding geometric properties of the underlying space, that we call metric-measure inequalities. This will be done thanks to an original interaction between variational and control theoretic techniques, respectively typical of the backgrounds of the applicant and of the Supervisor. Through this innovative point of view, we will obtain new results in the context of sR geometry and provide new techniques to study geometry and dynamics on metric-measure spaces presenting singularities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MESUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MESUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

SpaTime_AnTB (2020)

Single-cell spatiotemporal analysis of Mycobacterium tuberculosis responses to antibiotics within host microenvironments

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More