Opendata, web and dolomites

MesuR SIGNED

Metric-measure inequalities in sub-Riemannian manifolds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MesuR project word cloud

Explore the words cloud of the MesuR project. It provides you a very rough idea of what is the project "MesuR" about.

kernel    singularities    usually    context    group    adjointness    intrinsic    conjectured    estimates    smooth    arising    manifolds    employed    novelty    inequalities    underlying    pi    encoding    geometric    functional    erc    quantum    amounting    2016    stg    received    backgrounds    prove    expansion    singular    qualitative    isoperimetric    dynamics    techniques    informations    sr    theoretic    solutions    2010    theory    allowed    framework    variational    thanks    gecomethods    heisenberg    impulse    space    2017    region    geometry    opposite    interaction    riemannian    completeness    respectively    endowed    proving    stochastic    operators    dynamical    supervisor    geomeg    donne    mesur    hypoelliptic    view    confinement    suitable    follow    particles    self    literature    conjecture    relations    boscain    sub    naturally    innovative    obtain    generalizations    shape    presenting    pansu    heat    action    point    equation    class    le    deepen    frame    metric    spaces    original    laplacian   

Project "MesuR" data sheet

The following table provides information about the project.

Coordinator
SORBONNE UNIVERSITE 

Organization address
address: 21 RUE DE L'ECOLE DE MEDECINE
city: PARIS
postcode: 75006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 173˙076 €
 EC max contribution 173˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SORBONNE UNIVERSITE FR (PARIS) coordinator 173˙076.00

Map

 Project objective

The goal of MesuR is to deepen our knowledge of geometric and dynamical properties of a class of metric-measure spaces, called sub-Riemannian (sR) manifolds. These are generalizations of Riemannian manifolds, naturally arising in the frame of control theory and hypoelliptic operators. SR geometry is a theory in expansion, and it recently received a great impulse thanks to two ERC-StG on this topic: “GeCoMethods” (2010-2016, PI: U. Boscain), and “GeoMeG” (2017–now, PI: E. Le Donne). In this action we focus on sR manifolds endowed with intrinsic measures. These have been introduced in the frame of geometric control theory: as a key novelty, they are allowed here to have singularities, opposite to the smooth measures usually employed in the existing literature on geometry and analysis in sR manifolds. In this framework, we aim at proving: (1) sR isoperimetric inequalities for singular measures, and investigate relations with the standing Pansu’s conjecture about the shape of isoperimetric sets in the Heisenberg group; (2) Essential self-adjointness and stochastic completeness of the intrinsic sR Laplacian, amounting to prove the conjectured confinement of the heat and of quantum particles to the non-singular region; (3) Heat kernel estimates, i.e., qualitative informations on the solutions to the Heat equation for the intrinsic sR Laplacian. Our objectives will follow by proving suitable functional inequalities encoding geometric properties of the underlying space, that we call metric-measure inequalities. This will be done thanks to an original interaction between variational and control theoretic techniques, respectively typical of the backgrounds of the applicant and of the Supervisor. Through this innovative point of view, we will obtain new results in the context of sR geometry and provide new techniques to study geometry and dynamics on metric-measure spaces presenting singularities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MESUR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MESUR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More